Министерство по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики

Государственное бюджетное учреждение «Научно-исследовательский институт «Респиратор» Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики»

На правах рукописи

УДК [614.844.2"Тонкораспыленная вода":532.525.2/.3]:001.801.53

Ефименко Виталий Леонидович

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ УСТРОЙСТВ ПОЖАРОТУШЕНИЯ С ГАЗОДИНАМИЧЕСКИМ ПРИНЦИПОМ РАСПЫЛЕНИЯ ЖИДКОСТИ

Специальность 05.26.03 – Пожарная и промышленная безопасность (по отраслям) (технические науки)

Диссертация

на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, старший научный сотрудник Мамаев Валерий Владимирович

Идентичность всех экземпляров ПОДТВЕРЖДАЮ Ученый секретарь диссертационного совета Д 01.027.01 кандидат технических наук

И.Г. Старикова

ОГЛАВЛЕНИЕ

РАЗДЕЛ 1.	СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЙ
1.1.	Актуальность применения установок импульсного
1.0	пожаротушения
1.2.	Обзор и анализ существующих установок импульсного пожаротушения
1.3.	Особенности конструкций установок импульсного пожаротушения и их применения
1.4.	
	Цель и задачи исследований
РАЗЛЕЛ 2.	ИССЛЕДОВАНИЯ ПРОЦЕССОВ ПОДАЧІ
	ОГНЕТУШАЩИХ ВЕЩЕСТВ В УСТРОЙСТВАХ
	ПОЖАРОТУШЕНИЯ
2.1.	Исследования основных процессов подачи огнетушащи веществ устройствами пожаротушения с дискретных
2.1.1	принципом распыления жидкости
2.1.1.	пожаротушения с дискретным принципом распылени
2.1.2	жидкости
2.1.2.	Анализ исследований динамических процессов в ствол устройства пожаротушения с дискретным принципов распыления жидкости.
2.1.3.	Разработка математической модели динамических процессо в стволе устройства пожаротушения с дискретным принципол
2.2.	распыления жидкости
	принципом распыления жидкости
2.2.1.	Особенности конструктивных решений устройств пожаротушения с газодинамическим принципом распылени
222	жидкости
2.2.2.	Анализ исследований динамических процессов, происходящи в сопле устройств пожаротушения с газодинамических
2.2.3.	принципом распыления жидкости
	геометрических параметров сопла устройств
2.2	с газодинамическим принципом распыления жидкости
2.3.	Сравнительный анализ основных характеристи пожаротушащих устройств, реализующих дискретных
	и газодинамический принципы распыления жидкости

2.4.	Исследования взаимодействия капельного потока струи и теплового восходящего потока пожара		
	и теплового восходящего потока пожара		
	Выводы к разделу 2		
РАЗДЕЛ 3.			
	ЭФФЕКТИВНОСТИ УСТРОЙСТВА ПОЖАРОТУШЕНИЯ		
	С ГАЗОДИНАМИЧЕСКИМ ПРИНЦИПОМ РАСПЫЛЕНИЯ		
	жидкости		
3.1.	Методика проведения экспериментальных исследований		
3.2.	Выбор узлов и элементов конструкции экспериментального		
	образца устройства пожаротушения с газодинамическим		
	принципом распыления жидкости		
3.3.	Проведение экспериментальных исследований устройства		
	пожаротушения		
3.3.1.	Проведение экспериментальных исследований на дальность		
	газокапельного потока		
3.3.2.	Проведение экспериментальных исследований на определение		
	диаметра капель воды		
3.3.3.	Проведение экспериментальных исследований на определение		
	реактивной силы отдачи устройства пожаротушения,		
	действующей на оператора		
3.3.4			
	определению скорости газокапельного потока		
	Выводы к разделу 3		
РАЗДЕЛ 4.			
	РАНЦЕВОЙ УСТАНОВКИ ДЛЯ ТУШЕНИЯ ЛОКАЛЬНЫХ		
	ОЧАГОВ ПОЖАРА ТОНКОРАСПЫЛЕННОЙ ВОДОЙ		
4.1.			
	характеристики разработанного устройства пожаротушения		
	и опытного образца ранцевой установки тушения локальных		
	очагов пожара тонкораспыленной водой		
4.2.	Экспериментальная оценка эффективности опытного образца		
	ранцевой установки для тушения локальных очагов пожара		
4.0.1	тонкораспыленной водой с устройством пожаротушения		
4.2.1.	Предварительные испытания опытного образца ранцевой		
	установки для тушения локальных очагов пожара		
4.2.2	тонкораспыленной водой		
4.2.2.	Огневые испытания опытного образца ранцевой установки		
4 2 2	по ликвидации модельного очага пожара		
4.2.3.	Проведение испытаний опытного образца установки		
	для тушения локальных очагов пожара тонкораспыленной		
4.2	Водой.		
4.3.	1 1 1		
A A	пожаротушения.		
4.4.			
	Выводы к разделу 4		

ЗАКЛЮЧЕНИЕ		128
	УРЫ	130
ПРИЛОЖЕНИЕ А.	Техническое задание на ранцевую установку	
	для тушения локальных очагов пожара	
	тонкораспыленной водой (устройство импульсного	
	тушения пожаров)	146
ПРИЛОЖЕНИЕ Б.	Акт приемочных испытаний опытного образца	
	ранцевой установки для тушения локальных очагов	
	пожара тонкораспыленной водой (устройство	
	импульсного тушения пожаров)	148
ПРИЛОЖЕНИЕ В.	Акт проведения опытных испытаний опытного	
	образца ранцевой установки для тушения локальных	
	очагов пожара тонкораспыленной водой	150
приложение г.	Акт о внедрении результатов исследований	
	диссертационной работы (ГБУО ВО «АГЗ МЧС	
	ДНР)	152
приложение д.	Справка о внедрении результатов исследований	
	диссертационной работы (МЧС ДНР)	153
приложение е.	Акт внедрения результатов исследований	
	диссертационной работы (ГБУ «НИИ «Респиратор»	
	МЧС ДНР»)	155
приложение ж.	Методические рекомендации по применению	
	ранцевой установки для тушения локальных очагов	
	пожара с газодинамическим принципом распыления	
	жидкости	157

ВВЕДЕНИЕ

Актуальность темы исследования. В современных условиях при износе технологического оборудования и пониженном техническом уровне обслуживающего персонала наблюдается увеличение числа пожаров техногенного характера, сопровождающихся материальными убытками и человеческими жертвами.

Эффективность тушения пожара во многом зависит от оперативности развертывания сил и средств пожарных расчетов. При возникновении локальных очагов пожаров наиболее перспективным является их ликвидация с применением первичных средств пожаротушения – огнетушителей различного исполнения.

Принцип действия большинства огнетушителей заключается в создании избыточного давления воздуха (или иного газа) в сосуде (одиночные или с газовым баллоном) и при его приведении в рабочее состояние, распыленная струя огнетушащего вещества направляется на очаг пожара. Их применение является эффективным при условии непосредственного подступа оператора на расстоянии 1...5 м к очагу и весьма затруднительно тушение на большее расстояние или труднодоступные места.

Для успешного тушения пожаров следует выполнять два основных требования: как можно быстрее начать их тушение и подавать в очаг горения огнетушащие вещества требуемого состава и с необходимой интенсивностью. В последнее время для подавления очагов возгорания на начальной стадии развития применяют установки импульсного пожаротушения, в конструкцию которых входят устройства пожаротушения с дискретным и газодинамическим принципами распыления жидкости, которые позволяет эффективно вести пожарноспасательные работы на объектах различного назначения.

Такие устройства пожаротушения обладают высокими показателями скорости импульса газокапельного потока, что позволяет эффективно подавлять очаги возгорания локального характера на достаточно большом удалении оператора от очага возгорания.

Однако в научных работах по разработкам устройств пожаротушения с газодинамическим принципом распыления жидкости недостаточно полно исследованы физические внутрикамерные процессы, происходящие в сопле, входящем в конструкцию устройства, что не позволяет в полной мере реализовать условия эффективной подачи огнетушащего вещества при ликвидации горения.

В связи с вышеизложенным, обоснование параметров устройств пожаротушения с газодинамическим принципом распыления жидкости позволит повысить эффективность тушения очагов пожаров и расширить тактические возможности подразделений аварийно-спасательных служб, что является актуальной научно-технической задачей.

Диссертация выполнена в соответствии с Планами работы Государственного бюджетного учреждения «Научно-исследовательский институт «Респиратор» Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики» на 2018 −2020 гг. в рамках научно-исследовательской и опытно-конструкторской работы № 11616036 «Разработать ранцевую установку для тушения локальных очагов пожара тонкораспыленной водой (устройство импульсного тушения пожаров)» при непосредственном участии автора в качестве ответственного исполнителя.

Степень разработанности темы исследования. Теоретическим и экспериментальным исследованиям установок пожаротушения посвящены научные труды ведущих ученых Российской Федерации и Беларуси: И.А., Ю.В., Лепешинского Долотказина Зуева Доркина Э.А., В.И., Протасова A.H., Иваницкого Α.Γ., Самойлова B.B., Лебедева A.C., Кочетова О.С., Стареевой М.О., Стареевой М.М. и других.

Разработке и совершенствованию техники и технологии газодинамического распыления жидкости посвящены труды Карпышева А.В., Душкина А.Л., Ловчинского С.Е., Агеева В.Г., Мамаева В.В., Пашковского П.С., Пефтибая Г.И., Галухина Н.А. и других.

Несмотря на значительный объем проведенных исследований, способы и технические средства с газодинамическим принципом распыления жидкости

имеют недостатки. Поэтому обоснование параметров устройств пожаротушения с газодинамическим принципом распыления жидкости является актуальной научнотехнической задачей.

Цель и задачи исследования. Цель работы – установление закономерностей внутрикамерных газодинамических процессов для обоснования параметров устройств и повышение эффективности их тушения тонкораспыленной жидкостью локальных пожаров в начальной стадии.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ ведения работ по тушению пожаров в начальной стадии и применяемых первичных средств пожаротушения;
- разработать математические модели газодинамических процессов в устройствах с дискретным и газодинамическим принципами распыления жидкости для установления влияния конструктивных параметров на эффективность доставки огнетушащего вещества;
- провести сравнительный анализ газодинамических характеристик устройств с
 дискретным и газодинамическим принципами распылением жидкости для
 установления их эффективности;
- провести анализ технических решений и разработать конструктивную схему устройства пожаротушения с газодинамическим принципом распыления жидкости;
- выполнить экспериментальные исследования и оценку эффективности разработанного экспериментального образца устройства пожаротушения с газодинамическим принципом распыления жидкости;
- разработать техническую документацию на ранцевую установку для тушения
 локальных очагов пожара тонкораспыленной водой, изготовить опытный образец;
- разработать методические рекомендации по применению ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой.

Объект исследования — внутрикамерные газодинамические процессы, протекающие в сопле устройства пожаротушения.

Предмет исследования – формирование струи тонкораспыленной жидкости в процессе подачи в очаг пожара из сопла устройства пожаротушения в

зависимости от геометрических и гидродинамических параметров газокапельных потоков.

Научная новизна полученных результатов состоит в том, что автором:

- 1. Разработана математическая модель динамических процессов в стволе устройства пожаротушения с дискретным формированием потока жидкости на срезе насадка, отличающаяся от известных тем, что учитывает особенности протекания термодинамического процесса в газовой и жидкостной камерах, а также влияние инерционных потерь давления и местного сопротивления при внезапном сужении насадка.
- 2. Получено нелинейное дифференциальное уравнение второго порядка, описывающее процесс движения жидкости в стволе устройства, отличающееся от известных тем, что сопротивление резинового насадка рассматривалось как сопротивление отверстия в тонкой стенке со скругленной входной кромкой, при допущении об адиабатическом процессе расширения газа в газовой и жидкостной камерах, что позволяет упростить численные расчеты гидродинамических параметров.
- 3. Впервые разработана математическая модель движения газокапельного потока в сопле устройства с газодинамическим принципом распыления жидкости, в которой предложена новая алгебраическая функция давления, удовлетворяющая плавности изменения давления по длине сопла, наличию максимума в начале и минимума на его срезе, что позволило выполнить численные исследования, получить рациональный профиль сопла и повысить эффективность тушения пожара.
- 4. Впервые научно обоснован геометрический профиль трехкамерного сопла устройства с газодинамическим принципом распыления жидкости, который учитывает влияние изотермического двухфазного газокапельного потока на внутрикамерные процессы.

Теоретическая и практическая значимость работы:

1 Разработаны математические модели динамических процессов в стволе устройства пожаротушения с дискретным и газодинамическим принципами

формирования газокапельного потока, учитывающие влияние потерь на ускорение жидкости и местное сопротивление, а также взаимосвязь конструктивных и газодинамических параметров позволяет научно обосновывать технические требования на этапе проектирования данного устройства, определить влияние конструктивных параметров на основные характеристики: скорость струи, расход жидкости, расход газа, время импульса, реактивную силу.

- 2. На основании рассчитанного геометрического профиля сопла разработана техническая документация И изготовлен опытный образец устройства пожаротушения с газодинамическим принципом распыления жидкости, который использован в ранцевой установке, успешно прошедшая предварительные и приемочные испытания, подтвердившие обоснованность параметров, также рекомендована к внедрению в пожарно-спасательные подразделения МЧС ДНР.
- 3. Результаты диссертационной работы получили внедрение в научный и учебный процессы ГБОУ ВО «Академия гражданской защиты МЧС ДНР» при проведении занятий по дисциплинам «Профессиональная подготовка пожарного» и «Пожарная и аварийно-спасательная техника», а также используются ГБУ «НИИ «Респиратор» МЧС ДНР при выполнении научно-исследовательских и опытно-конструкторских работ в области пожарной и промышленной безопасности.

Методология и методы исследования. При выполнении диссертационной работы использовался комплексный подход, содержащий анализ и обобщение научных результатов полученных другими авторами; ранее методы математической физики; математическое моделирование и численное решение процессов в сопле устройства пожаротушения с газодинамическим принципом распыления жидкости; экспериментальные исследования влияния эксплуатационных параметров устройства конструктивных сопле пожаротушения с газодинамическим принципом распыления жидкости с последующей математической обработкой результатов.

Положения, выносимые на защиту.

1. Математические модели динамических процессов в стволе устройства пожаротушения с дискретным формированием газокапельного потока на срезе

насадка при внезапном сужении насадка и скругленной входной кромкой, что позволяет установить взаимосвязь конструктивных и газодинамических параметров и научно обосновать технические требования при проектировании данного устройства.

- 2. Математическая модель динамических процессов в сопле устройства пожаротушения с газодинамическим принципом распыления жидкости и плавностью изменения давления по длине сопла, что позволило получить рациональный профиль сопла и повысить эффективность тушения очагов пожара.
- 3. Получено эмпирическое выражение в виде алгебраической функции третьего порядка зависимости скорости газокапельного потока от дальности его подачи, что позволяет определить максимальное расстояние, на котором осуществляется эффективное тушение пожара.

Степень достоверности и апробация результатов диссертации подтверждается: корректным использованием основных положений применяемых методов Сен-Венана и Ванцеля, Бернулли, Кориолиса, Рунге-Кутта, Клапейрона, закона Бойля-Мариотта для моделирования гидродинамических процессов газокапельных потоков, расчетов параметров, результатами экспериментальных испытаний и реального применения, подтверждённых соответствующими актами.

Результаты диссертационной работы докладывались и получили положительную оценку на заседаниях Ученого совета и его секций «Предупреждение и ликвидация чрезвычайных ситуаций» НИИГД «Респиратор» (2018 – 2022 гг.).

Основные положения и отдельные этапы диссертационной работы докладывались, обсуждались и получили положительные отзывы на 7 научных конференциях и форумах, проводимых в ДНР, Российской Федерации:

ГОУВПО «Академия гражданской защиты» МЧС ДНР: Республиканская научная конференция «Безопасность в чрезвычайных ситуациях» (Донецк, 05.12.2018); III Республиканская научная конференция «Современное состояние и перспективы дальнейшего развития системы гражданской обороны Донецкой Народной Республики» (Донецк, 17.10.2019); III Республиканская научнотехническая конференция «Пожарная безопасность объектов республики»

(Донецк, 28.03.2021); IV Республиканской научной конференции «Современное состояние и перспективы дальнейшего развития системы гражданской обороны Донецкой Народной Республики» (Донецк, 19.10.2021); IV Республиканской научно-технической конференции «Пожарная безопасность объектов Республики», приуроченная ко Дню пожарной охраны (Донецк, 28.04.2022);

ФГБОУ ВО Воронежский Государственный технический университет VII Международная научно-практическая конференция «Комплексные проблемы техносферной безопасности» (Россия, г. Воронеж, 24-25.02.2022);

СПИ (филиал) ФГБОУ ВО ИжГТУ им. М.Т. Калашникова II Международная научно-техническая конференция «Актуальные проблемы науки и техники», посвященной 70-летию ИМИ-ИжГТУ и 60-летию СПИ (филиал) ФГБОУ ВО ИжГТУ им. М.Т. Калашникова (Россия, г. Сарапул, 19-21.05.2022).

Личный вклад соискателя состоит в формировании целей и задач исследований, научных положений и выводов; проведении теоретических исследований газодинамических процессов в устройствах с дискретным и газодинамическим принципами распыления жидкости для установления влияния конструктивных параметров на эффективность доставки огнетушащего вещества; проведения сравнительного анализа газодинамических характеристик устройств с дискретным и газодинамическим принципами распылением жидкости для установления их эффективности; проведения анализа технических решений и разработке конструктивной схемы устройства пожаротушения с газодинамическим принципом распыления жидкости; выполнения экспериментальных исследований и оценке эффективности разработанного экспериментального образца устройства пожаротушения с газодинамическим принципом распыления жидкости; разработке технической документации на ранцевую установку для тушения локальных очагов пожара тонкораспыленной водой и изготовлении опытного образца; разработке методических рекомендаций по применению ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой.

Публикации. Основные результаты диссертации изложены в 16 научных и учебно-методической работах, в том числе: семь статей опубликованы

в рецензируемых научных изданиях ВАК при Минобрнауки ДНР; одна статья — в научном издании ВАК при Минобрнауки России; семь статей — в сборниках материалов научных конференций, входящих в наукометрическую базу РИНЦ, одна работа в виде методических рекомендаций.

Структура и объем диссертации. Диссертация состоит из введения, основной части (из четырех разделов), заключения (с основными выводами), списка литературы из 131 наименований и 7 приложений. Работа изложена на 145 страницах машинописного текста, содержит 41 рисунок и 16 таблиц.

РАЗДЕЛ 1

СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЙ

1.1 Актуальность применения установок импульсного пожаротушения

Пожары возникают и развиваются всюду, где есть горючие материалы и источники их воспламенения. Многочисленные и опустошительные пожары приносили огромные убытки и человеческие жертвы.

Многочисленные исследования, отмечают возрастающий рост пожарной опасности. С каждым годом обстановка с пожарами остаётся сложной. Согласно данным Центра пожарной статистики Международной ассоциации пожарных и спасательных служб ежегодно в мире происходит 3,1-4,5 млн. пожаров, каждые 5-6 секунд происходит в среднем один-два пожара [1].

Для борьбы с пожарами разрабатываются различные технические приёмы «укрощения» огня, которые включают в себя первичные средства тушения, пожарные машины, стационарные и переносные установки пожаротушения [2]. Их развитие осуществлялось на протяжении столетий и прошло большой путь от простого снаряжения до мощных средств тушения пожаров. Они создаются и совершенствуются на основе научно-технического прогресса. По мере развития техники создаются новые огнетушащие вещества, средства и способы «доставки» их непосредственно для ликвидации горения [3].

Успех тушения пожаров достигается проведением комплекса оперативнотактических действий и инженерно-технических мероприятий, направленных на спасение людей и имущества от опасных факторов пожара, ликвидацию пожаров и проведение аварийно-спасательных работ [4]. Тактические приемы ликвидации пожаров находятся в тесной связи с развитием средств и способов тушения [5]. Техника тушения пожаров продолжает развиваться по пути различной реализации известных трех принципов: охлаждения сферы горения, отделения или изоляции горения от горючего материала, прекращения доступа кислорода в область горения, т.е. изъятия одного из трех элементов процесса горения [6]. Наиболее распространенным способом тушения пожаров остается способ охлаждения. Основным огнетушащим средством его реализации является вода, подаваемая пожарными стволами в виде сплошных и распыленных струй [7, 8].

Вода – наиболее эффективное, экологически безопасное, общедоступное и дешевое средство пожаротушения. Однако, при тушении пожара пожарнотехническим оборудованием с большим расходом воды, часто наносится значительны вторичный материальный ущерб [9,10]. Это объясняется тем, что ручные пожарные стволы, которые формируют сплошные и распыленные струи воды в зависимости от конструктивных особенностей и своих характеристик подают более 3,5 литров в секунду [11,12].

Анализ некоторых происшедших пожаров в мире показывает, что недостаточные первоначальные действия сотрудников добровольных пожарных дружин предприятий, организаций, а также сотрудников аварийно-спасательных служб по ликвидации горения, приводит к тому, что «рядовой» пожар может перейти в разряд «крупных пожаров» с большим материальным ущербом и длительным сроком его тушения [13]. Отсутствие эффективных средств борьбы с пожарами является причиной перехода его в развитую стадию [14].

Поэтому необходимость подачи огнетушащих веществ в кратчайшие сроки на первоначальном этапе его развития для ликвидации горения, позволит избежать большие человеческие жертвы и уменьшить материальный ущерб [15,16].

Одной из важнейших задач при эксплуатации различных объектов: промышленных (в особенности с пожароопасным и с вредным производством), в сфере отдыха и досуга (в гостиницах, ресторанах, спортивных и выставочных комплексах), в медицинских и оздоровительных учреждениях (в клиниках,

санаториях, пансионатах, турбазах) — является своевременное подавление возникающих очагов возгорания. Наилучших результатов тушения можно добиться в начальный период распространения пожара в течении 5 — 10 минут [17].

Принимая во внимание, что основной боевой задачей подразделений МЧС является спасание людей, в случае угрозы их жизни, имущества, достижение локализация и ликвидации пожаров [18], то подавление очагов возгорания на ранней стадии, с применением установок импульсного пожаротушения (далее – УИПТ) будет наиболее эффективным.

По имеющимся тактико-техническим характеристикам существующих УИПТ, возможно тушение пожаров классов А (горение твёрдых веществ), В (горение жидких веществ), С (горение газообразных веществ), а также Е (электрооборудования, находящегося под напряжением до 36 кВ) [19]. Кроме того, подача огнетушащего вещества осуществляется на расстояние: от 10 до 15 метров [20].

Значимость оснащения пожарно-спасательных подразделений УИПТ объясняется тем, что материальные и людские потери в ходе тушения пожаров и ликвидации последствий чрезвычайных ситуаций во многом обусловлены недостаточной оперативностью применения средств тушения пожаров способом подачи воды с большим расходом [21]. Так, если среднее время прибытия пожарных подразделений в условиях большого города составляет около 10-15 мин [22], то сократить его можно примерно до 6-7 мин. при использовании автомобилей быстрого реагирования, укомплектованных УИПТ.

В 70-х годах двадцатого века одно из направлений в области обеспечения пожарной безопасности было изучение расширения функциональных возможностей для эффективной подачи тонкораспыленной воды для ликвидации пожара [23].

Результатом этой работы явилось создание установок для подачи огнетушащего состава в зону горения импульсным методом. Наиболее известные установки импульсного пожаротушения, разработанные в Российской Федерации

(«РУПТ-1-0,4»; «ИГЛА-1-0,4», ГИРС-400), Беларуси («Витязь» «УИП-1», «Витязь» УПТ-1-10/(0,4)-7»), ФРГ «IFEX -1».

Учеными Российской Федерации созданы газодинамические технологии для проведения тушения пожаров при применении водяного тонкораспыленного облака, которые по своим характеристикам превосходили аналоги других стран, благополучно зарекомендовавших себя на практике [24].

УИПТ предназначены для тушения локальных очагов пожара начальной стадии. Ограниченный запас пожаротушащего вещества и сжатого воздуха обуславливают применение в УИПТ новых более эффективных способов распыления и доставки пожаротушащего вещества в зону пожара [25].

Важно отметить, что особенно сложно вести борьбу с пожарами в замкнутых помещениях, имеющих ограниченные возможности для подачи средств пожаротушения, таких как подвальных и полуподвальных помещений, шахт, тоннелей, в помещениях с ограниченным пространством на «специфичных» объектах: например, подводные лодки и морские суда [26].

При применении УИПТ водяная струя выбрасывается под большим давлением, в результате чего огонь может быть сбит с очага горения [27, 28]. Также, для использования этих установок, не требуется специальной подготовки для оператора. Наиболее эффективно использовать эти установки для подавления пламени на начальной стадии его возникновения непосредственно сотрудниками пожарно-спасательных подразделений, добровольных пожарных дружин, охраной или дежурными, на объектах, в промышленности, в офисах организаций и в учреждениях. За счет оперативной и своевременной подачи огнетушащих веществ на тушение пожара на ранней стадии горения позволит значительно сократить время ликвидации пожара, уменьшить материальный тем самым ущерб [29, 30].

Наиболее прогрессивными являются технологии пожаротушения высокоскоростной тонкораспыленной струей пожаротушащего вещества. В отличие от способов с большим расходом воды, они позволяют осуществлять

эффективное тушение пожаров при минимальных затратах пожаротушащего вещества [31, 32]. При этом исключается вторичный ущерб от проливов большого количества воды.

Совершенствование технологии пожаротушения УИПТ привело к развитию двух подходов к формированию тонкораспыленной струи воды: дискретного и газодинамического распыления. Каждое из УИПТ, применяется в практике пожаротушения и показывает примерно одинаковую эффективность [32], реализующие технологию мелкодисперсного распыления воды и ее высокоскоростную доставку с большой кинетической энергией в ядро очага пожара [33, 34].

Имеющиеся в наличии другие средства пожаротушения: порошковые, газовые, аэрозольные и т.д., несмотря на высокую эффективность, часто неприменимы из соображений безопасности, по экологическим, экономическим или иным причинам [35,36].

Поскольку УИПТ являются переносными, то они имеют небольшой запас воды и ограниченную массу (не более 30 кг), позволяющую оператору перемещаться вместе с УИПТ и осуществлять действия, направленные на прекращение пожара [37].

УИПТ способны сократить время от прибытия подразделений до начала пожаротушения в несколько раз, при этом они являются достаточно мощным средством борьбы с огнем и позволяют ликвидировать загорания на площади нескольких десятков квадратных метров [38].

В начале 2000 года в 1-ой Государственной пожарно-спасательной части г. Донецка пожарная автоцистерна, находящиеся в боевом расчете, была укомплектована установкой импульсного тушения ИТ-501 (Украина), которая использовалась при ликвидации некоторых единичных пожаров. Однако, ввиду того, что применение её стало не эффективной при тушении пожаров, дальнейшая эксплуатация была остановлена. Объяснение этому находило в таких ответах: сильная реактивная сила отдачи пожарного ствола, которая негативно действовала на пожарного (вплоть до получения травмы предплечья); длительная перезарядка

для последующего выстрела огнетушащего вещества (около 15 с), в результате чего, горение начиналось вновь; ИТ-501, совместно с экипировкой пожарного, имела значительный вес (более 40 кг), повышающий утомляемость во время исполнения служебных обязанностей [39]; дорогостоящие эксплуатационные расходные материалы при проведении технических обслуживаний и ремонта УИПТ.

Реактивная сила отдачи пожарных стволов некоторых УИПТ составляет до 300 Н [40]. Из-за этого, даже при принятии устойчивого положения оператором, он теряет равновесие. Известны случаи, когда у операторов появлялись синяки на плече — месте упора ствола. Большая реактивная сила отдачи сказывается на конструкции ствола — он снабжен рукоятками для его надежного удержания двумя руками, ремнем и упором.

Анализ работ судебных медиков, изучавших различные аспекты механизма и условия возникновения повреждений при действии тупым предметом, позволяют выделить четыре степени силы удара [41]:

- 1) небольшая сила удара до 160 H (до 156,9 H образуются такие повреждения, как кровоподтеки без размозжения мышечной ткани, при силе удара более 156,9 H образуются локальные разрывы и размозжения мышечной ткани);
- 2) значительная сила удара от 160 H до 1960 H (образование размозжение подкожной жировой клетчатки и отслоение кожи, что происходит при силе удара более 196 H, более 313 H образуются повреждения вне органных магистральных сосудов);
 - 3) большая сила удара от 1960 Н до 4900 Н;
 - 4) очень большая сила удара более 4900 Н.

Многочисленными исследованиями подтверждено, что пожаротушение с помощью тонкораспыленной воды имеет ряд существенных преимуществ по сравнению с существующими системами:

 высокая эффективность применения тонкораспыленной воды уменьшает потребность воды для ликвидации загораний в 10-20 раз по сравнению со способами тушения с большим расходом воды;

- значительно уменьшается ущерб от пожара и от последствий его тушения;
- экологическая безопасность средств пожаротушения;
- снижение эксплуатационных расходов по сравнению с порошковыми, аэрозольными, газовыми системами [42].

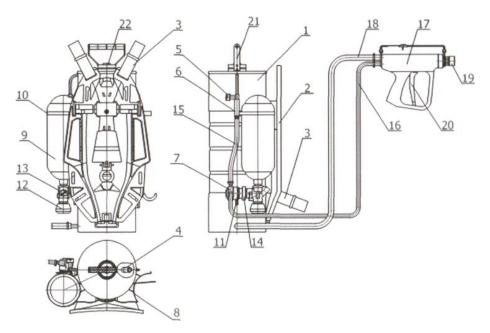
Основываясь на вышесказанном, можно сделать вывод, что для тушения пожара наиболее доступным, экономически-выгодным огнетушащим веществом является вода. Наилучших результатов тушения можно добиться в начальный период развития пожара [43]. Для оперативного подавления огня применяются установки импульсного пожаротушения, которые зарекомендовали себя с положительной стороны и имеют ряд существенных преимуществ по сравнению с существующими способами тушения с большим расходом воды.

1.2 Обзор и анализ существующих установок импульсного пожаротушения

Для проведения дальнейших исследований по конструктивным решениям, а также их тактико-технических характеристик необходимо провести обзор и анализ некоторых существующих УИПТ.

Ранцевая установка пожаротушения РУПТ-1-0,4 относится к УИПТ с газодинамическим принципом распыления жидкости и предназначена для тушения очагов возгорания класса A, класса B и класса E [44]. Основные тактикотехнические характеристики ранцевой установки пожаротушения РУПТ-1-0,4 представлены в таблице 1.1.

Таблица 1.1 – Основные тактико-технические характеристики РУПТ-1-0,4


Основные характеристики	Параметр
1	2
Объём тушащей жидкости, л, не более	11
Дальность подачи огнетушащего вещества, м, не менее	15

Продолжение таблицы 1.1

1	2
Объёмный расход огнетушащего вещества, л/с	0,4±0,02
Номинальное рабочее давление наддува емкости, МПа	1,0
Рабочее давление в воздушном баллоне, МПа, не более	29,4
Дисперсность капель воды около, мкм	150
Объём воздушного баллона, л, не менее	2,0
Конструкционная масса, кг, не более	22,5
Габаритные размеры, мм, не более	680x450x300

Принцип действия установки основан на использовании энергии сжатого воздуха для формирования и ускорения воздушно-капельного потока. Смешение водного раствора огнетушащего вещества с потоком сжатого воздуха обеспечивается выбором конструкции пожарного ствола и распылительной форсунки [45].

Работа установки осуществляется следующим образом. После открытия вентиля сжатый воздух из баллона поступает на вход редуктора, за которым давление понижается до 1,0 МПа. От выходного штуцера редуктора сжатый воздух по шлангу подаётся в свободный объём емкости, где создаётся избыточное давление, необходимое для вытеснения огнетушащего вещества. Под действием возникающего перепада давления огнетушащее вещество и сжатый воздух через шланги поступают на вход пожарного ствола. После нажатия на пусковой рычаг, клапаны, установленные в пожарном стволе, открываются, и формируемая в камере смешения смесь воздуха и огнетушащего вещества подается через распылительную форсунку на выход ствола. Полученный на выходе из пожарного ствола высокоскоростной поток огнетушащего вещества эффективно пробивает зону пламени и подавляет очаг возгорания [46,47]. После снятия усилия с пускового рычага клапаны закрываются и автоматически прекращается подача огнетушащего вещества из пожарного ствола. Конструктивная схема РУПТ-1-0,4 представлена на Рисунке 1.1.

1 — корпус установки; 2 — несущая спинка; 3 — наплечные ремни спинки; 4 — клапан предохранительный; 5 — индикатор давления; 6 — клапан обратный; 7 — редуктор воздушный; 8 — ложемент; 9 — баллон воздушный; 10 — бандаж; 11 — кронштейн редуктора; 12 — вентиль баллонный; 13 — манометр; 14 — маховик резьбовой втулки редуктора; 15, 16 — гибкие шланги для подачи сжатого воздуха; 17 — ствол пожарный; 18 — гибкий шланг для подачи огнетушащего вещества; 19 — форсунка распылительная; 20 — рычаг пусковой; 21 — заглушка; 22 — клапан дренажный

Рисунок 1.1 – Конструктивная схема РУПТ-1-0,4

Установка пожаротушения ранцевая «Витязь УПТ 10/1(0,4)-7» относится к УИПТ с дискретном принципом распыления жидкости и предназначена для тушения пожаров класса А и Б и одновременной защиты органов дыхания и зрения пожарного-оператора. Формирует мелкодисперсное водяное облако, вытесняющее кислород из зоны горения, сбивающее и экранирующее пламя [48]. Основной эффект тушения установкой достигается за счет механического сбивания пламени частицами мелкодисперсной воды, разбавления кислорода в зоне горения, и создания облака воды, обладающего экранизирующим эффектом [49].

Применение установки пожаротушения сокращает время тушения пожара в 4-5 раз, расход огнетушащего вещества в 25-30 раз. Это значительно снижает

убытки от пожара и от последствий разлива воды при его тушении. В реальных условиях двумя установками можно потушить пожар в двухкомнатной квартире, затратив при этом 20 л воды, и сохранить при этом имущество граждан, проживающих этажами ниже от заливания водой при традиционных методах тушения, когда расходуются сотни литров воды [50, 51].

Основные технические характеристики «Витязь УПТ 10/1(0,4)-7» приведены в таблице 1.2.

Таблица 1.2 — Основные тактико-технические характеристики «Витязь УПТ 10/1(0,4)-7».

Основные характеристики	Параметр
Объем огнетушащего вещества, л, не более	10
Запас воздуха, л, не менее	1800
Количество выстрелов стволом импульсным СП-И	не менее 8
Время перезарядки ствола СП-И, с	5
Дальность выброса огнетушащего вещества, м, не менее	15
при распылении стволом СП-К, м, не менее	5
Дисперсность капель, мкм	5 – 100
Масса снаряженной установки, кг, не более	32
Габаритные размеры, мм	700 x 370 x 250

Ранцевая установка пожаротушения «Игла-1-0,4» относится к УИПТ с газодинамическим принципом распыления жидкости и предназначена для ликвидации пожара на начальной стадии, сдерживания его распространения, если к моменту обнаружения он успел сильно развиться. Она создавалась на основе передовых авиационных и космических технологий для МЧС РФ [52, 53].

Назначение подавление локальных очагов пожара класса A, класса B и класса E в бытовых, промышленных и служебных помещениях, а также на открытом пространстве [54].

Установка экологически безопасна (в отличие от порошковых, аэрозольных и газовых), не портит оборудование, окружающие предметы и обстановку – для тушения используется водопроводная вода, а для тушения нефтепродуктов – с небольшими добавками пенообразователя (до 3%), поэтому тушение можно начинать параллельно с эвакуацией персонала [55].

Одним из существенных ее преимуществ является электробезопасность — возможность тушения без отключения электроэнергии, что еще сокращает время до начала борьбы с огнем [56]. Установка является универсальным средством для противопожарной защиты.

Основные технические характеристики «ИГЛА-1-0,4» приведены в таблице 1.3.

Таблица 1.3. – Основные тактико-технические характеристики «ИГЛА-1-04»

Основные характеристики	Параметр
Огнетушащее вещество	вода
Объем огнетушащей жидкости, л, не более	12
Дальность, м, не более	10
Дисперсность капель около, мкм	100
Масса в заправленном состоянии	23
Габариты, мм	600 x 450 x 300
Время перезарядки для использования, с	20-60
Время работы дыхательной системы, не более	
с баллоном 2 л, мин	20
с баллоном 4 л, мин	40

Установка «Игла-1-0,4» производит тушение с помощью высокоскоростной тонкораспыленной струи воды. Размер капель около 150 мкм, скорость струи на выходе из ствола — около 80 м/с.

При попадании струи мелкодисперсной воды в очаг пожара капли начинают быстро испаряться, отбирая из зоны горения большое количество тепла, кроме того

образовавшийся при этом пар оттесняет кислород воздуха от очага пожара [57]. Поглощение тепла и выделение пара происходит примерно в 10000 раз интенсивнее, чем при использовании обычного пожарного ствола [58, 59]. Вода расходуется очень экономно — около 90% идет на тушение (у обычных пожарных стволов около 10—15%), что позволяет с помощью имеющегося её запаса ликвидировать достаточно серьезное возгорание, а окружающие предметы, стены и пол остаются практически сухими. Срыв горения достигается за счет высокой скорости струи (на максимальной дальности — около 20 м/с), в то время как у традиционных систем такая скорость жидкости только на выходе из ствола.

Режим максимальной дальности (до 10 м) — применяется в случае, когда приблизиться к очагу (или зайти в горящее помещение) не представляется возможным из-за высокой температуры.

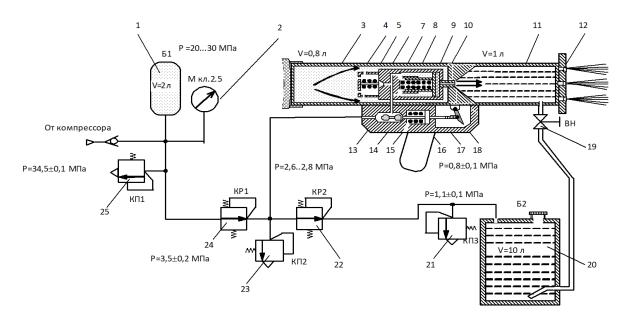
Режим распыливания (до 3 – 5 м). Эффективен при тушении легковоспламеняющихся жидкостей и твердых веществ.

Режим защиты от теплового излучения создает из мельчайших капель воды завесу радиусом $2-2.5\,$ м, для прохода через горящее помещение или снижения в нем температуры.

Приведенный обзор показывает, что технические характеристики существующих УИПТ между собой в большей степени схожи. Так дальность подачи составляет от 10 до 15 м, дисперсность капель около 150 микрон, снаряженная масса до 35 кг.

1.3 Особенности конструкций установок импульсного пожаротушения и их применение

Среди множества возможных конструктивных решений установок импульсного пожаротушения выделяются два различные направления развития — установки с дискретным принципом распыления жидкости и установки с газодинамическим принципом распыления жидкости.


Рассмотрим особенности конструкций установок с дискретным принципом распыления жидкости и их применение.

Все промышленно освоенные установки с дискретным принципом распыления жидкости имеют схожие конструктивные решения: баллоны со сжатым воздухом и пожаротушащим веществом, двухступенчатый редукционный клапан и ствол. Цилиндрический ствол содержит жидкостную и газовую камеры для аккумулирования дискретных объемов воды и сжатого газа. Жидкостная и газовая камеры разобщены между собой с помощью быстродействующего пневмоклапана.

Быстродействующий пневмоклапан содержит разгрузочную пневмополость, которая соединяется с атмосферой (разгружается) при нажатии на курок механизма выстрела. В результате пневмоклапан с высокой скоростью соединяет камеры сжатого воздуха и пожаротушащей жидкости. Сжатый воздух, расширяясь, мгновенно выбрасывает дискретный объем воды через разрезную диафрагму ствола. Более подробно конструкцию установок с дискретным принципом распыления жидкости и работу рассмотрим на примере установки «Витязь» УИП-1.

На Рисунке 1.2. показана конструктивная схема установки «Витязь» УИП-1, которая включает газовый баллон и бак с огнетушащей жидкостью, редукционные клапаны, цилиндрический ствол, вспомогательное оборудование: манометр, предохранительные клапаны запорный вентиль.

Давление зарядки газового баллона 1 составляет 20... 30 МПа в зависимости OT баллона. Редукционные клапаны образуют двухступенчатый редукционный клапан. Редукционный клапан понижает давление газа до 2,6 МПа подает его двум потребителям: цилиндрическому стволу и редукционному клапану. Редукционный клапан снижает выходное давление редукционного клапана до 0,8 МПа и подает его в бак с огнетушащей жидкостью, запорный камерой который соединен через вентиль жидкостной цилиндрического ствола.

1 — газовый баллон; 2 — манометр; 3 — цилиндрический ствол; 4 — газовая камера; 5, 8, 16 — пружина; 6 — обратный клапан; 7 — разгрузочная полость; 9 — быстродействующий клапан; 10 — полость; 11 — жидкостная камера; 12 — распылитель; 13 — клапанная полость; 14 — клапан; 15 — канал выпуска; 17 — шток; 18 — курок механизма выстрела; 19 — запорный вентиль; 20 — бак с огнетушащей жидкостью; 21, 23, 25 — предохранительные клапаны; 22, 24 — редукционный клапан

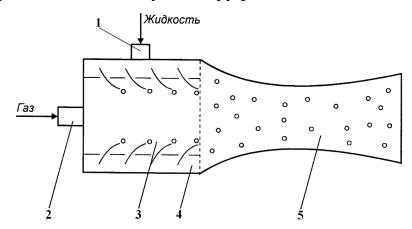
Рисунок 1.2 – Конструктивная схема установки «Витязь» УИП-1

Объем баллона составляет 2 объем газового Л. огнетушащей жидкости – 10 л. Цилиндрический ствол включает газовую камеру объемом 0,8 л, жидкостную камеру объемом 1 л, распылитель. Газовая и жидкостная камеры разобщены быстродействующим клапаном, который прижат к седлу пружиной. Сжатый газ под давлением 2,6 МПа с выхода редукционного клапана поступает в клапанную полость, а затем по каналам – в разгрузочную полость, прижимая быстродействующий клапан к седлу. Одновременно под действием давления газа сжимается пружина и обратный клапан отходит от седла, а в газовой камере устанавливается давление равное 2,6 МПа. Газовая камера соединена с полостью [60].

Таким образом, условие статического равновесия быстродействующего клапана, на которые действуют давления со стороны разгрузочной полости и полости соответственно, можно записать в виде:

$$P_3 \cdot S_3 + F_{\pi p 1} = P_3 \cdot S_4, \tag{1.1}$$

где $P_3=2,6\cdot 10^6$ Па — давление зарядки газовой камеры, $S_3,\,S_4$ — площади быстродействующего клапана, м², $F_{\rm пр1}$ — сила упругости пружины, H.


Заполнение жидкостной камеры водой осуществляется путем открытия запорного вентиля. Огнетушащая жидкость из бака под избыточным давлением 0,8 МПа поступает в жидкостную камеру, при этом воздух из жидкостной камеры вытесняется в атмосферу через распылитель. Заполнение цилиндрического ствола водой осуществляют при ориентации его к горизонту под углом 30...45° до истечения воды из распылителя, после чего закрывают запорный вентиль. В некоторых конструкциях запорный вентиль выполнен в виде передней рукоятки цилиндрического ствола, а его открытие или закрытие осуществляют поворотом рукоятки.

После заправки цилиндрического ствола порциями воды и сжатого газа установка готова к применению. Оператор направляет цилиндрический ствол в сторону очага пожара и нажимает на курок механизма выстрела. При этом шток сжимает пружину и смещает клапан в крайнее левое положение до запирания подачи сжатого воздуха в клапанную полость. Одновременно клапан, отходя от своего седла, соединяет разгрузочную полость с атмосферой через канал выпуска. Избыточное давление в разгрузочной полости становится равным нулю и быстродействующий клапан теряет равновесие. Поэтому первый член правой части уравнения (1.1) – P3 · S3 становится равным нулю и быстродействующий клапан 9 под действием неуравновешенной силы $P3 \cdot S4 > F_{np1}$ с большой скоростью открывает проходное сечение, соединяющее газовую и жидкостную камеры [61]. Сжатый воздух, мгновенно расширяясь, выталкивает порцию воды через распылитель. Установка «Витязь» УИП-1 «выстреливает» огнетушащую жидкость в очаг горения за несколько миллисекунд с очень высокой скоростью. Сопротивление воздуха разбивает водяную струю на капли диаметром до 100 мкм. Общая теплопоглощающая поверхность 1 л воды возрастает на два порядка по

сравнению с обычной струей, что позволяет охладить очаг горения с 1000 до 40 °C за доли секунды [62]. Благодаря большому расстоянию между каплями и отрыву струи от ствола установки «Витязь» УИП-1 может быть успешно применена для тушения электрооборудования с напряжением в десятки киловольт.

Рассмотрим особенности конструкций установок с газодинамическим принципом распыления жидкости и их применение. Установка, осуществляющая генерацию газокапельных струй повышенной дальнобойности, может быть реализована на основе профилированных газодинамических сопел. Установки отличаются простым конструктивным исполнением, отсутствием подвижных деталей, малым весом ствола, низким значением реактивной силы отдачи (при одинаковой скорости выброса огнетушащей жидкости по сравнению с установками дискретного действия — 60...80 м/с). На Рисунке 1.3 изображено сопло с камерой смешения для создания газокапельной струи, состоящее из узла подачи жидкости, узла подачи сжатого газа, смесительной камеры, распылительной камеры и профилированного сопла.

Сжатый газ подается вдоль продольной оси профилированного сопла, а жидкость — перпендикулярно вектору скорости газа. Узел подачи жидкости соединен с распылительной камерой, внутренние стенки которой выполнены с отверстиями. Проходя через отверстия, поток жидкости разделяется на отдельные струйки и поступает в смесительную камеру [63].

1 — узел подачи жидкости; 2 — узел подачи сжатого газа; 3 — смесительная камера; 4 — распылительная камера; 5 — профилированное сопло

Рисунок 1.3 – Сопло с камерой смешения

Элементарные струйки смешиваются с набегающим воздушным потоком, в результате чего образуется газокапельный поток. Для равномерного распыления воды в камере смешения 3 в качестве узла подачи воды 1 может использоваться струйная форсунка. Созданный в камере смешения 3 двухфазный поток разгоняется в профилированном сопле 5 и выбрасывается в направлении очага пожара с высокой скоростью.

Для компактирования (сжатия) газокапельного потока используется кольцевое сопло с камерой смешения (Рисунок 1.4). Устройство имеет близкую к вышеописанному соплу конструкцию и тот же принцип работы. Отличие заключается в том, что на выходе профилированного сопла установлено центральное тело, создающее однородное распределение капель воды по сечению струи [64].

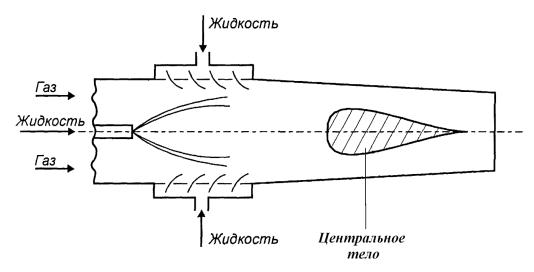
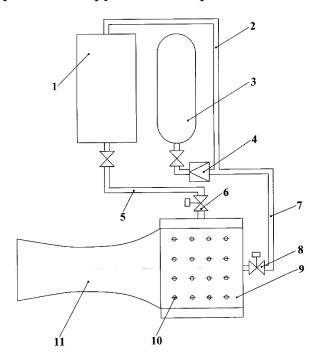



Рисунок 1.4 – Кольцевое сопло с камерой смешения

На Рисунке 1.5 показано устройство пожаротушения с эжектирующими отверстиями для генерации двухфазного газокапельного направленного потока огнетушащего вещества.

Установка содержит емкость для воды, баллон со сжатым воздухом, редукционный клапан, шланги, управляемые клапаны, камеру смешения, Работает эжектирующие отверстия, газодинамическое сопло. установка следующим образом. После заправки бака водой и баллона со сжатым воздухом открывают последовательно управляемые клапаны. При этом сжатый воздух с

выхода редукционного клапана поступает через шланги одновременно в бак и камеру смешения. Вода из бака вытесняется избыточным давлением через шланг и управляемый клапан в цилиндрическую камеру, на стенке которой выполнены эжектирующие отверстия [65]. В результате дробления потока воды в камеру смешения впрыскивается множество струек. Диаметр и количество струек определяются диаметром эжектирующих отверстий и их количеством.

1 — емкость для воды; 2, 5, 7— шланги; 3 — баллон со сжатым воздухом; 4 — редукционный клапан; 6, 8 — управляемые клапаны; 9 — камера смешения; 10 — эжектирующие отверстия; 11 — газодинамическое сопло.

Рисунок 1.5 – Установка пожаротушения с эжектирующими отверстиями

В результате взаимодействия струек жидкости с газовым потоком в камере смешения происходит дробление струек на отдельные капли и формирование газокапельного двухфазного потока. Двухфазный поток ускоряется в газодинамическом сопле и выбрасывается с высокой скоростью.

Сравнивая конструктивные решения и анализируя работу, приходим к выводу, что установки с дискретным и газодинамическим принципами распыления жидкости имеют близкие технические характеристики по дальности подачи и скорости выброса огнетушащей жидкости. Вместе с тем, конструкция установки с

дискретным существенно сложнее конструкции установки с газодинамическим принципом распыления жидкости, за счет имеющихся узлов: пружин, двухступенчатого редукционного клапана и быстродействующего клапана, выполненного из дефицитного материала – титана. Установки с газодинамическим принципом распыления жидкости выполнены конструктивно проще, у них отсутствуют сложные узлы, не требуется применение дефицитных материалов и более просты в изготовлении [66].

Из вышеприведенного приходим к следующему, что наибольшее применение нашли УИПТ с дискретным и газодинамическим принципами распыления жидкости. В установках с дискретным принципом тонкораспыленная вода образуется вне сопла — за счет взаимодействия дискретной порции воды с воздухом. В установках с газодинамическим принципом диспергация воды на капли происходит внутри сопла с последующим разгоном капельного потока и его выбросом в атмосферу. Очевидно, что длина сопла и его геометрический профиль существенно влияют на характеристики газокапельного потока, а, следовательно, и на эффективность тушения пожара. В связи с этим задача аналитического расчета профиля газокапельного сопла является актуальной для разработки новых эффективных пожаротушащих установок с тонкораспыленной водой.

1.4 Анализ результатов теоретических и экспериментальных исследований по разработке устройств пожаротушения

Тушение пожаров отводится большое количество исследований, которые велись в направлении изучения и разработки мероприятий по устранению причин их возникновения, разработки тактики и технических средств их ликвидации. Одним из технических способов тушения пожаров является использование УИПТ, которым посвящено множество научных трудов в мировой практике.

Патентно-информационные исследования проведены с целью определения уровня и тенденций развития существующих УИПТ, конструктивных решений устройств и элементов, входящих в УИПТ, а также их недостатков. Ретроспектива

поиска по источникам патентной и научно-технической информации принята за 25 лет, что обусловлено целью исследований и длительностью жизненного цикла объекта поиска. Патентные исследования проводились относительно таких объектов собственности, как изобретения и полезные модели. Поиск проводился по странам: Украина, Российская Федерация, Республика Беларусь, ФРГ (ретроспективность 1994 — 2020 гг.). В результате проведенных патентных исследований установлено, что промышленностью освоено производство следующих установок: РУПТ-1-04 («Игла», Российская Федерация, пат. 2490041U1), «Витязь УИП-1» (Республика Беларусь, пат. 89397U1), IFEX-3012-«БАКПАК-12л» (Федеративная Республика Германия), УИПТ-11/1 «Волна-03», УИПТ «ОСА-1» (Российская Федерация) [67, 68].

Среди исследователей ряда стран и государств, занимавшихся вопросами, применения тонкораспыленных струй при ликвидации горения можно выделить следующих ученых и инженеров: Зуев Ю.В., Карпышев А.В., Лепешинский И.А., Доркин Э.А., Долотказин В.И., Душкин А.Л., Димов В.А., Ловчинский С.Е., Панкин И.Е., Протасов А.Н., Иваницкий А.Г., Самойлов В.В., Лебедев А.С., Кочетов О.С., Стареев М.О., Стареева М.М. и другие [69, 70, 71].

При анализе патентной документации, которая относится к исследованию в области применения тонкораспыленных струй можно выделить множество научнотехнической информации. Так, например, в устройстве для пожаротушения (патент №2132752 МПК В05В 7/04., 1999 г.) через систему трубопроводов и сопел возможно применение небольшого расхода воды для ликвидации горения [72]. В то же время недостатком данного изобретения является невысокая скорость истечения воды (10-40 м/с), это связано с большим сопротивлением во время прохождения жидкости через имеющиеся систему трубопроводов и сопла.

В устройстве для пожаротушения (патент РФ № 2076760, МПК А 62 С 5/00, 35/00, 1997 г.) предлагалось повысить эффективность пожаротушения и экономичность использования воды и рабочего газа за счет увеличения кинетической энергии факела распыла [73]. Упущением устройства является: не эффективность при работе для создания огнетушащей смеси, сложная система

управления, сложные быстродействующие клапаны и значительное количество трубопроводов и, кроме того, предусматривает взаимодействие баллона высокого давления рабочего газа с сосудом для воды [74].

Технической задачей, на решение которой направлено изобретение, является расширение функциональных возможностей и упрощение способа и устройства при одновременном повышении эффективности и безопасности пожаротушения и более экономичное использование рабочего газа и огнегасящей жидкости путем сокращения количества трубопроводов и применения более простых и оперативных методов управления скоростью и объемом заполнения распылительной камеры и защиты органов дыхания оператора.

Так, в 1998 году Зуевым Ю.В., Карпышевым А.В., Лепешинским И.А. была запатентована установка и сопло для создания газокапельной струи (патент RU 2107554 С1 МПК В05В 7/00), где рассмотрена технология генерации газокапельных струй повышенной дальности полета.

В 1999 году изобретателями Деменченок П.В. и Астаповым В.П. (Белорусия) предложена ранцевая установка для тушения пожара «Витязь» УИП-1, в которой огнетушащая жидкость и рабочий газ находятся в отдельных баллонах. Осуществляется подача рабочего газа в легочный автомат лицевой защитной маски. Одновременно подача жидкости через трубопровод, быстродействующий клапан и систему сопел. Происходит дробление и выброс через насадку огнетушащей смеси, при этом регулировку скорости и объема заполнения распылительной камеры осуществляют ручным управлением [75].

В переносных установках пожаротушения, где распылитель жидкости выполнен многоканальным, например, как в патенте US 6425537 (МПК: А62С 31/00, опубликован 07.03.2001) существует недостаток, где генерация распыленных потоков жидкости как через центральный, так и через периферийные каналы распылителя жидкости осуществляется в однофазном режиме, без предварительного смешения жидкости и газа [76].

Наиболее близкий аналог переносной установки пожаротушения раскрыт в патенте RU 2254155 (МПК: A62C 15/00, 31/02, опубликован 20.06.2005). Известная

ранцевая установка пожаротушения содержит емкость для хранения огнетушащего вещества (далее – ОТВ), по меньшей мере, один баллон со сжатым газом и ствол с распылителем жидкого ОТВ и клапанами подачи жидкости. Распыление жидкого ОТВ через распылитель производится в однофазном режиме (без предварительного смешения жидкости и газа). С помощью направляющих элементов завихрителя осуществляется закрутка потока жидкости, а также управление размером капель и углом раскрытия факела генерируемого тонкораспыленного потока [77].

Недостатком этой переносной установки пожаротушения является то, что регулировку угла конусности распыленного потока и размера капель жидкости в распыленном потоке можно производить только в ограниченном диапазоне [78]. При использовании ствола с регулятором режима распыления ОТВ невозможно попеременно генерировать однофазные (жидкостные) и двухфазные (газожидкостные) потоки. Кроме того, не позволяет управлять пространственными характеристиками распыленного потока в широком диапазоне, изменять форму распыленного потока и регулировать расход ОТВ [79]. Данные недостатки обусловлены отсутствием возможности управления скоростью капель за счет изменения режима генерации газокапельного потока.

В переносных установках пожаротушения, помощью которых обеспечивается генерация двухфазных газокапельных потоков за счет предварительного смешения жидкости и газа и последующего ускорения сформированного газокапельного потока, которые предложили Душкин А.Л. и Карпышев А.В., (см., патент RU 2297864, МПК: A62C 13/00, опубликован 27.04.2007) требуемая скорость газокапельного потока, дальность подачи огнетушащего состава до 12 м, достигается за счет давления газа, подаваемого в камеру смешения. При этом скорость газокапельной струи на выходе составляет до 80 m/c [80].

Также, Карпышевым А.В., Душкиным А.Л., Ловчинским С.Е., Панкиным И.Е., в 2012 году было предложена переносная установка пожаротушения (патент RU2490041C1), которая используется в ранцевых установках пожаротушения. Которая имеет емкость для огнетушащего вещества,

баллон с газом, ствол с распылителем и курковым механизмом, средство регулирования распыления огнетушащего вещества и трубопроводы. Конструкция установки позволяет изменять режимы распыления ОТВ путем попеременного переключения между однофазным и двухфазным режимом генерации [81].

Детальный анализ технических решений установок показал, что в состав установок с дискретным принципом распыления жидкости входит двухступенчатый редукционный клапан, быстродействующий титановый клапан, композитные баллоны, облегченная нержавеющая емкость для воды. В установки с газодинамическим принципом распыления жидкости не требуется применение двухступенчатого редукционного клапана и быстродействующего титанового клапана, тем самым более просты в изготовлении.

Однако, в имеющейся технической документации не приведены данные зависимости параметров геометрии сопла устройств пожаротушения с газодинамическим принципом распыления жидкости при движении тонкораспыленного двухфазного потока огнетушащего вещества, что не позволяет в полной мере реализовать условия эффективной подачи огнетушащего вещества для ликвидации горения.

Принимая во внимание очевидный интерес к этому направлению исследований, можно сделать вывод о его актуальности и перспективах использования устройств пожаротушения с газодинамическим принципом распыления жидкости для ликвидации пожаров.

Значимость работы состоит в повышении эффективности тушения очагов газокапельного локальных пожара счет создания потока за тонкораспыленной воды и ее подачи В пламенную зону пожара, интенсифицирует фазовые превращения капель воды в пар, приводит к повышению скорости охлаждения горящей поверхности и ускоренному тушению пожара.

Цель и задачи исследований

На основании результатов проведенных исследований целью работы является установление закономерностей внутрикамерных газодинамических

процессов для обоснования параметров устройств и повышение эффективности их тушения тонкораспыленной жидкостью локальных пожаров в начальной стадии.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ ведения работ по тушению пожаров в начальной стадии и применяемых первичных средств пожаротушения;
- разработать математические модели газодинамических процессов в устройствах с дискретным и газодинамическим принципами распыления жидкости для установления влияния конструктивных параметров на эффективность доставки огнетушащего вещества;
- провести сравнительный анализ газодинамических характеристик устройств с дискретным и газодинамическим принципами распылением жидкости для установления их эффективности;
- провести анализ технических решений и разработать конструктивную схему
 устройства пожаротушения с газодинамическим принципом распыления жидкости;
- выполнить экспериментальные исследования и оценку эффективности разработанного экспериментального образца устройства пожаротушения с газодинамическим принципом распыления жидкости;
- разработать техническую документацию на ранцевую установку для тушения локальных очагов пожара тонкораспыленной водой, изготовить опытный образец;
- разработать методические рекомендации по применению ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой.

РАЗДЕЛ 2

ИССЛЕДОВАНИЯ ПРОЦЕССОВ ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ В УСТРОЙСТВАХ ПОЖАРОТУШЕНИЯ

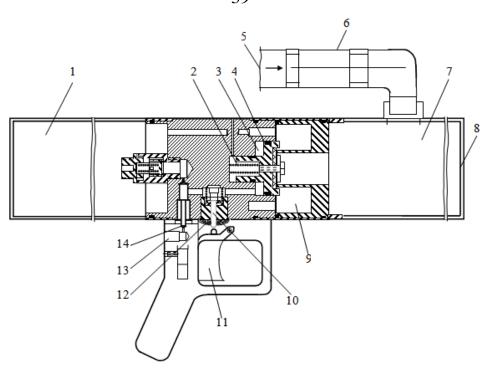
2.1 Исследование основных процессов устройств пожаротушения с дискретным принципом распыления жидкости

При изучении влияния дисперсности распыления на эффективность пожаротушения установлено, что капельный поток тонкораспыленной воды более эффективно (быстрее) подавляет очаг пожара и с меньшей затратой пожаротушащей жидкости.

Исследованиями [82, 83] установлена причина неоднозначности влияния тонкораспыленного капельного потока на эффективность тушения пожара, заключающаяся существенно взаимодействия В разных режимах крупнораспыленной и тонкораспыленной воды с конвективными восходящими тепловыми потоками горящего материала. Это стало возможным благодаря изучению физических механизмов и внешних условий, определяющих реализацию иного режима взаимодействия теплового потока пожара тонкораспыленной водой [84, 85].

С целью определения эффективности применения устройств пожаротушения с дискретным способом подачи огнетушащих веществ, необходимо провести анализ особенностей конструктивных решений устройства пожаротушения. Проанализировать физические процессы, происходящие в стволе устройств пожаротушения с дискретным способом подачи огнетушащих веществ. Построить математические модели физических процессов, происходящие в стволе с дискретной подачей огнетушащего вещества.

2.1.1 Особенности конструктивных решений ствола устройства пожаротушения с дискретным принципом распыления жидкости.


Рассмотрим особенности конструктивных решений устройств пожаротушения с дискретной подачей тонкораспыленной воды. К такому пожаротушащему устройству относится устройство типа «IFEX».

На Рисунке 2.1. приведена конструктивная схема ствола устройства импульсного пожаротушения «IFEX». Ствол содержит газовую и жидкостную камеры, водяной вентиль, быстродействующий клапан, пружину, разгрузочную полость, полость, курок, обратный клапан, каналы разгрузки, дроссель, штуцер подвода воздуха, штуцер подвода воды, резиновую диафрагму.

В устройстве «IFEX» при нажатии на курок открывается обратный клапан и соединяет разгрузочную камеру с атмосферой через каналы. Одновременно с атмосферой соединяется подвод сжатого воздуха через дроссель, что приводит к потере устойчивости быстродействующего клапана и перебрасыванию его в крайнее левое положение.

Клапан выполнен из титана, а поэтому за счет минимальной массы переключается с высокой скоростью. При этом сжатый воздух из газовой камеры через полость под давлением 2,6 МПа поступает в жидкостную камеру объемом 1 л. При мгновенном нарастании давления в жидкостной камере происходит выброс воды массой 1 кг в виде выстрела.

Диспергация воды осуществляется за счет ее дробления лепестками разрезной резиновой диафрагмы, а затем — за счет силы аэродинамического сопротивления воздуха [86].

1 — газовая камера; 2 — пружина; 3 — разгрузочная полость; 4 — быстродействующий клапан; 5 — штуцер подвода воды, 6 — водяной вентиль; 7 — жидкостная камера; 8 — диафрагма; 9 — полость, 10 — обратный клапан; 11 —курок, 12 —каналы разгрузки, 13 — штуцер подвода воздуха; 14 — дроссель

Рисунок 2.1 – Конструктивная схема ствола устройства импульсного пожаротушения IFEX.

Ствол импульсного устройства пожаротушения представляет собой полый цилиндр, внутри которого расположены разобщенные клапаном газовая и жидкостная полости. Со стороны жидкостной полости расположен цилиндрическая насадка. При выстреле пожаротушащим зарядом клапан мгновенно открывается и газ из газовой полости вытесняет жидкость из жидкостной полости через насадку. При этом за клапаном образуется газовая полость переменного объема, которая постоянно увеличивается за счет уменьшения объема жидкости до ее полного вытеснения из ствола.

2.1.2 Анализ исследований динамических процессов в стволе устройства пожаротушения с дискретным принципом распыления жидкости.

Авторами проведенного исследования [87] установлено, что движение огнетушащей жидкости в стволе сопровождается потерей массы (за счет вытеснения через распылители), что влияет на внутрикамерные динамические процессы.

Дифференциальное уравнение (2.1.) движения огнетушащей жидкости в стволе импульсного устройства пожаротушения с учетом переменной массы, позволило рассчитать основные параметры этого устройства: давление в жидкостной камере, скорость струи на срезе ствола, время импульса, реактивную силу:

$$x\frac{d^2x}{dt^2} - l\frac{d^2x}{dt^2} + \frac{A}{2\mu^2\varphi^2} \left(\frac{dx}{dt}\right)^2 - \frac{l}{\varepsilon t_u \varphi} \frac{dx}{dt} = 0.$$
 (2.1.)

Получены оценочные значения начальной скорости, длительности импульса, реактивной силы. В результате проведенного расчета установлено, что при количестве распылителей равных 5 с диаметром сечения 4 мм, длительность импульса будет равна 0,23 с, а скорость струи на срезе ствола 68,6 м/с.

Расчеты проведены при некоторых оценочных допущениях, в результате которых предложенное нелинейное дифференциальное уравнение не имеет аналитического решения и поэтому решение осуществлялось только при этих допущениях. Кроме того, не учтено влияние инерционных потерь давления при разгоне жидкости в стволе.

В исследованиях, приведенных в работе [88] рассмотрены закономерности импульсного истечения жидкости из ствола пожаротушащего устройства. В работе не обосновано применение уравнения адиабатического расширения газа одновременно для двух полостей, разобщенных быстродействующим клапаном.

Рассмотрены [89] тенденции развития импульсных огнегасящих систем для тушения пожаров тонкораспыленным водяным потоком. Рассчитана скорость выходного потока импульсных устройств типа IFEX. Показано, что энергетическая возможность ствола не обеспечивает фактическую скорость струи, заявленную производителем.

Для устранения вышеуказанных недостатков, необходимо разработать математическую модель динамических процессов в стволе устройств импульсного пожаротушения с дискретной подачей огнетушащего вещества, по результатам которых можно будет определить основные динамические характеристики импульсного истечения жидкости из ствола.

2.1.3 Разработка математической модели динамических процессов в стволе устройств пожаротушения с дискретным принципом распыления жидкости.

При разработке математической модели динамических процессов в стволе импульсного устройства пожаротушения приняты следующие допущения:

- влиянием изменения площади сечения клапана при его открывании на динамические процессы пренебрегаем ввиду быстроты открывания клапана;
- граница раздела фаз (газа и жидкости) плоская (скорость течения жидкости по сечению ствола одинакова);
- термодинамические процессы в газовых полостях ствола происходят без теплообмена (за счет большой скорости вытеснения жидкости), т.е. адиабатические с показателем адиабаты k=1,4;
 - стенки ствола абсолютно жесткие.

Работа ствола импульсного устройства пожаротушения связана с периодическим наполнением и опорожнением сжатым воздухом полостей постоянного и переменного объема, причем массовое количество воздуха в полостях непрерывно меняется (Рисунок 2.2.) Из-за этого закономерности, собой параметры состояния связывающие между воздуха ходе термодинамических процессов, нарушаются. Поэтому газовые процессы в

полостях с переменной массой газа описываются уравнением адиабат в дифференциальной форме, полученным на основе уравнения энергетического баланса (уравнения сохранения энергии).

1 — цилиндрический корпус; 2 — газовая камера; 3 — управляемый клапан; 4 — жидкостная камера; 5 — распылители.

Рисунок 2.2 – Фрагмент ствола импульсного устройства пожаротушения

Представим уравнение адиабаты в дифференциальной форме для газовых полостей. Опорожняющаяся газовая полость ($v_1 = \text{const}$) описана уравнением адиабаты в дифференциальной форме:

$$\frac{dp_1}{d\tau} = -kp_1 \frac{1}{m_1} \frac{dm_1}{d\tau},\tag{2.2}$$

где p_1 — давление в газовой полости, Π а;

 m_1 — масса газа в газовой полости, кг;

k — показатель адиабаты.

Для наполняющейся газовой полости переменного объема уравнение адиабаты в дифференциальной форме представим в виде:

$$\frac{dp_2}{d\tau} = kp_2 \left(\frac{1}{m_2} \frac{dm_2}{d\tau} - \frac{1}{v_2} \frac{dv_2}{d\tau} \right), \tag{2.3}$$

где p_2 — давление в газовой полости переменного объема, Па;

 m_2 — масса газа в газовой полости переменного объема, кг;

 v_2 — переменный объем газовой полости, м³.

Связь между термодинамическими параметрами уравнений (2.2) и (2.3) представим, используя уравнение Сен-Венана и Ванцеля для подкритического истечения газа через проходное сечение клапана:

$$\frac{dm_1}{d\tau} = -\mu_1 f \sqrt{\frac{2k}{k-1} \frac{m_1}{v_1} p_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{2}{k}} - \left(\frac{p_2}{p_1} \right)^{\frac{k+1}{k}} \right]}, \tag{2.4}$$

где μ_1 – коэффициент расхода клапана (справочное значение);

f – площадь сечения клапана, M^2 .

Очевидно, что для массовых расходов газа, перетекающего из газовой полости постоянного объема в газовую полость переменного объема, справедливо соотношение

$$\frac{dm_1}{d\tau} = -\frac{dm_2}{d\tau}.\tag{2.5}$$

Зависимость объемного расхода жидкости Q, м³/с через насадку ствола представим в виде:

$$Q = \mu S \sqrt{\frac{2}{\rho}} \sqrt{\Delta p},$$

где µ – коэффициент расхода насадка;

S – площадь сечения насадка, M^2 ;

 ρ – плотность жидкости, кг/м³;

 Δp — перепад давления на насадке, Па.

На основании закона неразрывности потока представим, что объемный расход газа в полости переменного объема равен объемному расходу жидкости через насадку:

$$\frac{dv_2}{d\tau} = -\mu S \sqrt{\frac{2}{\rho}} \sqrt{\Delta p}.$$
 (2.6)

Перепад давления Δp находим по формуле:

$$\Delta p = p_2 - \Delta p_{\rm c} - \Delta p_{\rm u} - p_{\rm a},$$

где $\Delta p_{\rm c}$ — потери давления на местном сопротивлении при переходе от ствола к насадку, Па;

 Δp_{u} — потери давления на преодоление силы инерции жидкости, Па;

 $p_{\rm a}$ — давление окружающей среды, Па.

Потери давления на местном сопротивлении равны:

$$\Delta p_{\rm c} = \zeta \left(1 - \frac{S}{A} \right) \frac{\rho v_{\rm H}^2}{2},\tag{2.7}$$

где ζ — безразмерный коэффициент, зависящий от соотношения площадей ствола и насадка (справочное значение);

A - площадь сечения ствола, M^2 ;

 $v_{\rm H}$ — скорость жидкости в насадке, м/с.

Инерционные потери давления в стволе представим в виде формулы

$$\Delta p_{\rm H} = \rho \left(l_{\rm x} - x\right) \frac{du}{d\tau},\tag{2.8}$$

где $l_{\text{ж}}$ – длина жидкостной полости, м;

u – скорость жидкости в стволе, м/с;

x — координата перемещения жидкости, м.

Скорость жидкости в стволе выразим из уравнения неразрывности потока $\frac{dv_2}{d\tau} = -uA$, откуда:

$$u = -\frac{1}{A} \frac{dv_2}{d\tau}.\tag{2.9}$$

Подставляя выражение (2.9) в формулу (2.8), имеем:

$$\Delta p_{\text{\tiny H}} = -\rho \frac{l_{\text{\tiny K}} - x}{A} \frac{d^2 v_2}{d\tau^2}.$$

Ввиду того, что $x = v_2/A$, имеем:

$$\Delta p_{\text{\tiny M}} = -\rho \frac{A l_{_{\text{\tiny M}}} - v_2}{A^2} \frac{d^2 v_2}{d \tau^2}.$$

Квадрат скорости $v_{\rm H}^2$ жидкости в насадке, входящей в формулу (2.6), представим следующим образом. Скорость $v_{\rm H}$ выразим из уравнения:

$$v_{\scriptscriptstyle \mathrm{H}} = \phi \sqrt{\frac{2}{\rho}} \sqrt{p_2 - \Delta p_{\scriptscriptstyle \mathrm{H}} - \Delta p_{\scriptscriptstyle \mathrm{C}} - p_{\scriptscriptstyle \mathrm{a}}},$$

где ф – коэффициент скорости струи в насадке.

Полученные выражения для $\Delta p_{\rm c}$ и $\Delta p_{\rm u}$ подставляем в формулу для $v_{\rm H}$, получаем:

$$v_{\rm H} = \phi \sqrt{\frac{2}{\rho}} \sqrt{p_2 + \rho \frac{A l_{\rm K} - v_2}{A^2} \frac{d^2 v_2}{d\tau^2} - \zeta \left(1 - \frac{S}{A}\right) \frac{\rho}{2} v_{\rm H}^2 - p_{\rm a}}.$$

Обе части полученного уравнения возводим в квадрат и решаем уравнение относительно $v_{_{\mathrm{H}}}^2$:

$$v_{\rm H}^2 = \frac{2\phi^2}{1 + \phi^2 \zeta \left(1 - \frac{S}{A}\right)} \left(\frac{1}{\rho} P_2 + \frac{A l_{\rm w} - v_2}{A} \frac{d^2 v_2}{d\tau^2} - \frac{1}{\rho} P_{\rm a}\right). \tag{2.10}$$

Таким образом, уравнение (2.6) в развернутом виде:

$$\frac{dv_2}{d\tau} = -\mu S \sqrt{\frac{2}{\rho}} \sqrt{p_2 - \zeta \left(1 - \frac{S}{A}\right) \frac{\rho v_{\text{H}}^2}{2} + \rho \frac{A l_{\text{x}} - v_2}{A^2} \frac{d^2 v_2}{d\tau^2} - P_{\text{a}}}.$$
 (2.11)

Объединяя уравнения (2.2) — (2.5), (2.10), (2.11), получаем систему дифференциальных уравнений, замкнутую относительно переменных p_1, p_2, m_1, m_2, v_2 :

$$\frac{dp_{1}}{d\tau} = -kp_{1} \frac{1}{m_{1}} \frac{dm_{1}}{d\tau};$$

$$\frac{dp_{2}}{d\tau} = kp_{2} \left(\frac{1}{m_{2}} \frac{dm_{2}}{d\tau} - \frac{1}{v_{2}} \frac{dv_{2}}{d\tau}\right);$$

$$\frac{dm_{2}}{d\tau} = -\mu f \sqrt{\frac{2k}{k-1}} \frac{m_{1}}{v_{1}} p_{1} \left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{k}} - \left(\frac{p_{2}}{p_{1}}\right)^{\frac{k+1}{k}}\right];$$

$$\frac{dm_{1}}{d\tau} = -\frac{dm_{2}}{d\tau};$$

$$v_{H}^{2} = \frac{2\varphi^{2}}{1+\varphi^{2}\xi\left(1-\frac{S}{A}\right)} \left(\frac{1}{\rho}p_{2} + \frac{Al_{x}-v_{2}}{A^{2}} \frac{d^{2}v_{2}}{d\tau^{2}} - \frac{1}{\rho}p_{a}\right);$$

$$\frac{dv_{2}}{d\tau} = -\mu S \sqrt{\frac{2}{\rho}} \sqrt{p_{2} - \zeta\left(1-\frac{S}{A}\right)} \frac{\rho v_{H}^{2}}{2} + \rho \frac{Al_{x}-v_{2}}{A^{2}} \frac{d^{2}v_{2}}{d\tau^{2}} - p_{a}.$$
(2.12)

Начальные условия системы (2.12) $p_1(0) = p_{10}$; $p_2(0) = p_{20}$; $m_2(0) = m_{20}$; $v_2(0) = v_{20}$; $v_2'(0) = v_{21}$. Начальное значение массы газа $m_1(0)$ в полости постоянного объема представим, используя уравнение состояния идеального газа:

$$m_1(0) = \frac{p_1(0)v_1}{RT},$$

где R — универсальная газовая постоянная, Дж/(кг·К);

T — температура газа, К.

Численные значения начальных условий принимают следующие значения: $p_{10}=2,6$ МПа; $p_{20}=0;$ $m_1(0)=0,0257$ кг; $m_{20}=0;$ $v_{20}=0;$ $v_{21}=0.$

Время импульса $\tau_{\rm u}$ рассчитываем при условии опорожнения жидкостной полости (заполнения ее вытесняемым газом), т.е. при условии $v_2(\tau_{\rm u}) = v_{\rm w}$, где $v_{\rm w}$ – объем жидкостной полости, м³ [90].

В результате решения системы (2.12) получаем: скорость массового расхода газа $\frac{dm_2}{d\tau}$, изменение объемного расхода жидкости на срезе насадка $\frac{dv_2}{d\tau}$, скорость

струи на срезе насадка $v_{\rm H}$. Реактивную силу струи R, H, представим по формуле $R = v_{\rm H} \frac{dm_2}{d\tau}$, а ее среднее значение за время импульса $\tau_{\rm H}$ равно

$$\overline{R} = \frac{1}{\tau_{\scriptscriptstyle \rm H}} \int\limits_0^{\tau_{\scriptscriptstyle \rm H}} v_{\scriptscriptstyle \rm H} \frac{dm_2}{d\tau} d\tau = \frac{1}{\tau_{\scriptscriptstyle \rm H}} \int\limits_0^{\tau_{\scriptscriptstyle \rm H}} v_{\scriptscriptstyle \rm H} dm_2.$$

Компьютерная реализация предложенного дифференциального уравнения методом Рунге–Кутта четвертого порядка позволила получить следующие параметры: массовый расход жидкости (см. Рисунок 2.3), скорость жидкости на срезе насадка (см. Рисунок 2.4), реактивную силу истекающей струи (см. Рисунок 2.5), время импульса.

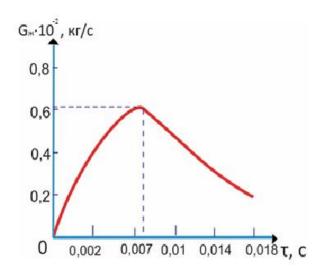


Рисунок 2.3 – Массовый расход жидкости

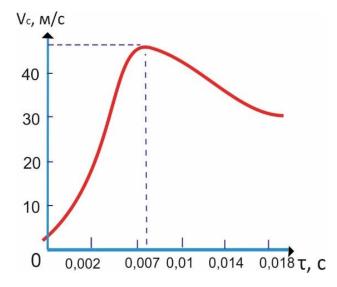


Рисунок 2.4 – Скорость жидкости на срезе насадка

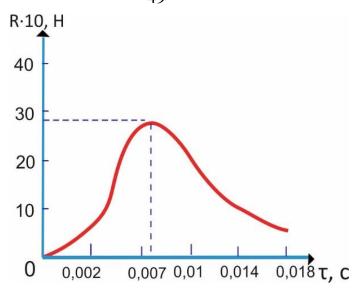


Рисунок 2.5 – Реактивная сила истекающей струи

Разработанная математическая модель динамических процессов в стволе импульсного устройства пожаротушения учитывает влияние потерь на ускорение пожаротушащей жидкости и местное сопротивление при переходе от ствола к насадке, а также устанавливает взаимосвязь конструктивных и газодинамических параметров для научного обоснования технических требований при проектировании устройства, получения расчетных параметров для сравнения с аналогичными ранцевыми устройствами пожаротушения, функционирующими на основе других принципов работы.

Ввиду того что математическая модель (2.12) является достаточно сложная, поэтому для упрощения расчетов основных параметров динамического процесса движения огнетушащей жидкости стволе устройства пожаротушения В разработать математическую предлагается модель виде другую дифференциального уравнения второго порядка.

Для неустановившегося процесса в стволе пожаротушащего устройства с дискретной подачей огнетушащего вещества уравнение Бернулли будет иметь вид:

$$p + \alpha_1 \frac{\rho v^2}{2} = p_a + \alpha_2 \frac{\rho v_c^2}{2} + \Delta p_H + \Delta p_{cT}, \qquad (2.13)$$

где p — давление жидкости, Па;

 α_1, α_2 — коэффициенты Кориолиса в сечениях потока;

 ρ – плотность жидкости, кг/м³;

v – скорость жидкости в стволе, м/с;

 $p_{\rm a}$ — давление окружающей среды, Па;

 $v_{\rm c}$ – скорость жидкости на срезе ствола, м/с;

 $\Delta p_{\rm u}$ – давление силы инерции жидкости, Па;

 $\Delta p_{\rm cr}$ — потери давления в насадке ствола, Па.

Поскольку расширение газа в полостях 1 и 4 (см. рис. 2.2) происходит без потери давления на клапане и без изменения массы газа (нет прорыва газа через насадку), то для адиабатического процесса расширения газа справедливо соотношение:

$$\frac{p}{p_{\rm o}} = \left(\frac{v_{\rm r}}{v_{\rm r} + v_{\rm w}}\right)^k,\tag{2.14}$$

где p_0 — начальное давление газа в газовой полости, Π а;

 v_{Γ} – объем газовой полости, м³;

 $v_{\text{ж}}$ – объем газа в жидкостной полости, м³;

k — показатель адиабаты для воздуха.

С учетом цилиндрической геометрии ствола

$$v_{\Gamma} = Al_{\Gamma}; v_{\mathbb{K}} = Ax, \tag{2.15}$$

где A — площадь сечения ствола, M^2 ;

 $l_{\scriptscriptstyle \Gamma}$ – длина газовой полости, м;

х – текущая координата границы газ – жидкость, м.

Подставляя (2.14) в (2.15), находим выражение для давления:

$$p = p_{o} \left(\frac{l_{\Gamma}}{l_{\Gamma} + x} \right)^{k}. \tag{2.16}$$

Скорость жидкости в стволе представим в виде формулы:

$$v = \frac{dx}{d\tau}. (2.17)$$

Скорость струи жидкости на срезе ствола представим в виде формулы:

$$v_{\rm c} = \varphi \sqrt{\frac{2}{\rho}} \sqrt{\Delta p_{\rm cr}}, \qquad (2.18)$$

где ф – коэффициент скорости.

Потери давления в насадке ствола $\Delta p_{\rm ct}$ выразим из уравнения неразрывности потока в насадке и в стволе.

Объемный расход жидкости через насадку Q, м 3 /с, представим в виде формулы:

$$Q = \mu S \sqrt{\frac{2}{\rho}} \sqrt{\Delta p_{\rm cr}}, \qquad (2.19)$$

где μ – коэффициент расхода;

S — проходная площадь насадка, м 2 .

Объемный расход жидкости Q_c , м³/c, в цилиндрической части ствола равен:

$$Q_{\rm c} = Av = A\frac{dx}{d\tau}. (2.20)$$

Приравнивая правые части уравнений (2.19) и (2.20), представим уравнение:

$$\mu S \sqrt{\frac{2}{\rho}} \sqrt{\Delta p_{\rm cr}} = A \frac{dx}{d\tau}, \qquad (2.21)$$

из которого находим:

$$\sqrt{\Delta p_{\rm cr}} = \frac{A}{\mu S} \sqrt{\frac{\rho}{2}} \frac{dx}{d\tau}.$$
 (2.22)

Возводя обе части уравнения (2.21) в квадрат, представим уравнение:

$$\Delta p_{\rm cr} = \frac{\rho A^2}{2\mu^2 S^2} \left(\frac{dx}{d\tau}\right)^2. \tag{2.23}$$

Подставляя (2.22) в (2.18), имеем:

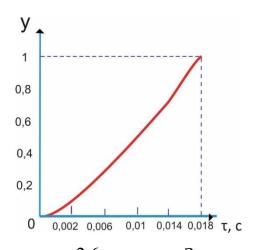
$$v_{c} = \frac{\varphi A}{\mu S} \frac{dx}{d\tau} = \frac{A}{\varepsilon S} \frac{dx}{d\tau},$$
 (2.24)

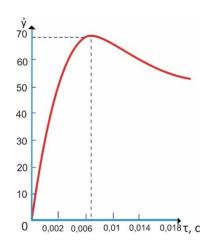
где ϵ – коэффициент сжатия струи.

Давление силы инерции жидкости определяем по формуле:

$$\Delta p_{_{\mathrm{H}}} = \rho \left(l_{_{\mathrm{K}}} - x\right) \frac{d^2 x}{d\tau^2}.\tag{2.25}$$

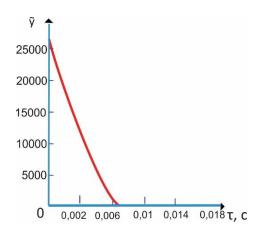
Найденные выражения (2.16), (2.17), (2.23) – (2.25) подставляем в уравнение (2.13). После приведения подобных и преобразований получаем дифференциальное уравнение:


$$\rho \left(l_{x} - x\right) \frac{d^{2}x}{d\tau^{2}} + \frac{\rho}{2} \left(\alpha_{2} \frac{A^{2}}{\varepsilon^{2} S^{2}} + \frac{A^{2}}{\mu^{2} S^{2}} - \alpha_{1}\right) \left(\frac{dx}{d\tau}\right)^{2} - p_{o} \left(\frac{l_{\Gamma}}{l_{\Gamma} + x}\right)^{k} + p_{a} = 0. \quad (2.26)$$


В уравнении (2.26) перейдем к безразмерной относительной переменной $y=x/l_{\mathbbm k}$. Тогда $x=l_{\mathbbm k}$; $\frac{dx}{d\tau}=l_{\mathbbm k}\frac{dy}{d\tau}$; $\frac{d^2x}{d\tau^2}=l_{\mathbbm k}\frac{d^2y}{d\tau^2}$. При этом $0\leq y\leq 1$. Обозначим отношение площадей S/A=a, тогда с учетом введенных относительных величин уравнение движения жидкости, записанное относительно переменной y, принимает вид

$$\rho l_{\mathbb{x}}^{2} (1-y) \frac{d^{2} y}{d\tau^{2}} + \frac{\rho}{2} \left(\frac{\alpha_{2}}{a^{2} \varepsilon^{2}} + \frac{1}{a^{2} \mu^{2}} - \alpha_{1} \right) l_{\mathbb{x}}^{2} \left(\frac{dy}{d\tau} \right)^{2} - p_{o} \left(\frac{l_{\Gamma}}{l_{\Gamma} + l_{\mathbb{x}} y} \right)^{k} + p_{a} = 0.$$

Начальные условия для относительной переменной y: y(0) = 0; y'(0) = 0.


Компьютерная реализация предложенного дифференциального уравнения методом Рунге–Кутта четвертого порядка позволила получить следующие зависимости относительной координаты положения от времени (см. рис. 2.6), скорость жидкости в стволе (Рисунок 2.7), ускорение жидкости в стволе (Рисунок 2.8), массовый расход жидкости (Рисунок 2.9), скорость жидкости на срезе насадка (Рисунок 2.10), реактивную силу истекающей струи (Рисунок 2.11), время импульса.

В

Рисунок 2.6 – Зависимость Рисунок 2.7 – Скорость жидкости относительной координаты положения стволе от времени

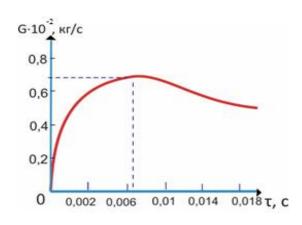
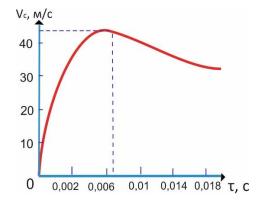



Рисунок 2.8 – Ускорение жидкости в стволе

Рисунок 2.9 – Массовый расход жидкости

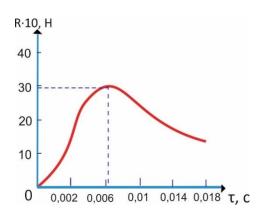


Рисунок 2.10 – Скорость жидкости на Рисунок срезе насадка истекают

Рисунок 2.11 – Реактивная сила истекающей струи

Оценку наибольшей скорости истечения жидкости из ствола можно получить на основании закона сохранения энергии, если предположить, что работа адиабатического расширения газа полностью преобразуется в кинетическую энергию истекающей струи жидкости. Работу адиабатического расширения газа от объема v_r до объема v_2 представим в виде:

$$E = \frac{p_{o \Gamma}}{k-1} \left[1 - \left(\frac{v_{\Gamma}}{v_{2}} \right)^{k-1} \right], \tag{2.27}$$

где E – работа расширения, Дж;

 v_2 – суммарный объем газовой и жидкостной камер, м³.

Кинетическую энергию истекающей из насадки струи представим в виде формулы:

$$K = \frac{mv^2}{2},\tag{2.28}$$

где K – кинетическая энергия, Дж;

m – масса огнетушащей жидкости, кг.

Приравнивая уравнения (2.27) и (2.28), получаем уравнение:

$$\frac{p_0 v_{\Gamma}}{k - 1} \left[1 - \left(\frac{v_{\Gamma}}{v_2} \right)^{k - 1} \right] = \frac{m v_c^2}{2}, \tag{2.29}$$

из которого выражаем максимальную скорость струи:

$$v_{c} = \sqrt{\frac{2p_{0}v_{\Gamma}}{m(k-1)}} \left[1 - \left(\frac{v_{\Gamma}}{v_{2}}\right)^{k-1} \right].$$
 (2.30)

Наибольшую скорость струи вычислим при следующих исходных данных: $p_0 = 2.6 \cdot 10^6$ Па, m = 1 кг, $v_r = 0.8 \cdot 10^{-3}$ м³, $v_2 = 1.8 \cdot 10^{-3}$ м³. Тогда скорости струи $v_c = 53.7$ м/с, реактивная сила истекающей струи равна 300 Н [91].

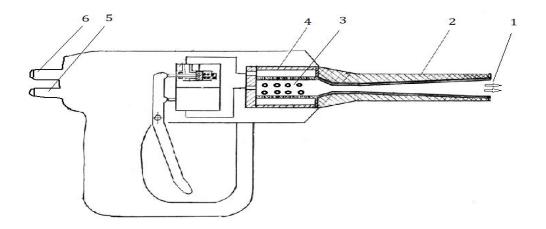
Полученное численное значение скорости струи — ее верхняя оценка, поскольку в уравнении энергетического баланса не учитывались потери энергии на преодоление гидравлического сопротивления насадка (идеальное преобразование энергии).

Как видно, что при решении математических моделей (2.12) и (2.26) полученные параметры существенно не отличаются друг от друга, что подтверждает правильность разработанных моделей.

Таким образом, анализируя конструкцию, работу и результаты проведенных расчетов, можно сделать вывод, что устройство с дискретной подачей огнетушащих веществ:

- имеет сложную конструкцию, которая снабжена быстродействующим клапаном, выполненным из дорогостоящего материала титана
 - имеет небольшой средний объемный расход воды за один цикл;
- нельзя применять для тушения пожара класса В из-за импульсного воздействия на горючую жидкость, в результате чего она разбрызгивается, а следовательно, активизируется пожар;
- при дискретной подаче огнетушащего вещества установкой импульсного пожаротушения на пожарного действует большой импульс силы отдачи ствола равная около 300 Н. В результате силового воздействия на оператора возможно травмирование пожарного и потеря его устойчивости.

В связи с этим, для выбора оптимального УИПТ, необходимо провести дальнейшие исследования газодинамических явлений, происходящих в сопле устройств пожаротушения с газодинамическим принципом распыления жидкости.


- 2.2 Исследования динамических процессов происходящих в сопле устройств пожаротушения с газодинамическим принципом распыления жидкости.
- 2.2.1 Особенности конструктивных решений устройства пожаротушения с газодинамическим принципом распыления жидкости.

Рассмотрим особенности конструктивных решений устройств пожаротушения с газодинамическим принципом распыления жидкости. К такому пожаротушащему устройству относится устройство типа РУПТ «Игла» [92].

На Рисунке 2.12 показана конструктивная схема устройства пожаротушения с газодинамическим принципом распыления жидкости РУПТ «Игла». Работает устройство следующим образом.

На первом подготовительном этапе поток огнетушащего вещества, поступающий на вход штуцера, разделяется на мелкие струйки с помощью системы отверстий, выполненных на цилиндрической поверхности распылительной втулки. Диаметр отверстий выполняется минимально возможным в условиях стандартного производства (около 1 мм), а количество определяется расходом пожаротушащего вещества (36 отверстий). Мелкие струйки попадают внутрь распылительной втулки – смесительную камеру.

На втором этапе распыления в смесительную камеру одновременно с подачей жидкости через штуцер подается высокоскоростной газовый поток перпендикулярный вектору скорости струек.

1 – тонкораспыленный газокапельный поток; 2 – сопло; 3 – система отверстий; 4 – распылительная втулка; 5 – штуцер подвода газа; штуцер подвода воды.

Рисунок 2.12 — Конструктивная схема устройства пожаротушения с газодинамическим способом подачи огнетушащих средств

При взаимодействии жидкостного и газового потоков внутри камеры смешения происходит первичное каплеобразование. Далее капли диаметром около 1 мм выносятся в область пониженного давления на вход профилированного сопла. В сопле капли разгоняются и распадаются. Скорость капель в газокапельном потоке достигает до 80 м/с, а их дисперсность составляет до 170 мкм [93].

По своим конструктивным особенностям устройства пожаротушения с газодинамическим принципом распыления жидкости менее сложен по сравнению с устройствами с дискретной подачей. Представленная конструктивная схема и характеристики устройства пожаротушения с газодинамическим принципом распыления жидкости РУПТ «Игла» позволит в дальнейшем провести сопоставление с характеристиками разработанной ранцевой установкой для тушения локальных очагов пожара тонкораспыленной водой.

2.2.2 Анализ исследований динамических процессов, происходящих в сопле устройств пожаротушения с газодинамическим принципом распыления жидкости.

Вопросы эффективности механизмов тушения пожаров тонкораспыленной водой рассмотрены в работе [94], где отмечается, что скорость подачи

огнетушащего вещества является одним из важнейших критериев эффективности устройств пожаротушения тонкораспыленной водой. Сравнение и анализ четырех моделей различных научных ШКОЛ для двухфазных струй базе экспериментальных данных приведены в статье [95]. Приведены области наиболее эффективного применения каждой модели. В работе [96] приведены критериальные исследования высококонцентрированных двухфазных течений и параметрические исследования турбулентной неравновесной монодисперсной осесимметричной струи без фазовых переходов, коагуляции и дробления капель. В ходе эксперимента измерены поля импульса и расходы фаз. Даны рекомендации по выбору параметров и проектированию пожарных систем различной мощности.

В монографии [97] рассматриваются течения двухфазных потоков в каналах переменного сечения с прямой и криволинейной осью в абсолютном и относительном движении. Представлено решение обратной задачи — расчета профиля сопла при движении в нем идеального газа с твердыми частицами рассмотрено, при этом закон изменения давления вдоль сопла принят обратноквадратичным, причем функция давления на срезе сопла имеет ненулевую производную.

Работа содержит значительный собственный экспериментальный материал по исследованию процессов во вскипающем и двухфазных потоках в каналах устройств.

Представлена математическая модель газодинамических процессов двухфазного потока в сопле пожаротушащего устройства, решением которой получены такие газодинамические характеристики [98]:

граничное значение давления на входе в газовое сопло равно $P_{_{\rm O\Gamma}} = 0.62 \cdot 10^6 \ \Pi \mathrm{a};$

минимальное значение скорости жидкости, равно $u_{\kappa 0} = 0.1$ м/с; температура жидкости и газа равна $T_{\Gamma 0} = T_{\kappa 0} = 293$ К.

Проведены исследования [99], направленные на определения массовых расходов газа, воды и мелкости капель. На основании статистических данных

ВНИИПО МЧС России и ограничений, связанных с массой ранцевой пожаротушащей установки, сделан вывод, что массовый расход воды должен быть равен $0.4~\rm kr/c$, газа $-13~\rm \cdot~10^{-3}~\rm kr/c$, давление на входе сопла $-0.5~\rm MП$ а, дальнобойность – не менее $5~\rm m$. Для решения обратной задачи применена функция давления, полученная на основе косинусоиды на отрезке $[0, \pi]$. Анализ функции давления показал, что приемлемые результаты получаются только при положительных значениях косинусоиды на отрезке $[0, \pi/2]$. На отрезке $(\pi/2, \pi]$ кривая функции давления не является плавно убывающей функцией, причем в точке $\pi/2$ не существует производной.

Синтез профиля газокапельного сопла, представленный на Рисунке 2.13, является сложной и неоднозначной задачей, для решения которой в общем случае используют уравнения движения, теплообмена, закона сохранения энергии, уравнения Клапейрона, закона неразрывности потока, записанные для газовой и капельной составляющей двухфазного потока.

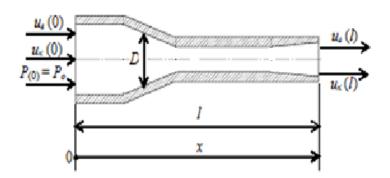


Рисунок 2.13 – Профиль газокапельного сопла устройства пожаротушения

Приведенные данные необходимы для определения геометрических характеристик сопла устройства с газодинамическим способом подачи огнетушащих веществ.

В устройствах с газодинамическим принципом распыления жидкости диспергация воды на капли происходит внутри сопла с последующим разгоном капельного потока и его выбросом в атмосферу. Длина сопла и его геометрический профиль влияют на характеристики газокапельного потока, а, следовательно, и на эффективность тушения пожара.

В работе [100] выполнены исследования и расчет сопла с двухфазным газокапельным потоком. Эффективность сопла оценивалась с помощью энергетических характеристик: отношения кинетической энергии на срезе сопла к кинетической энергии «фиктивного газа» и отношения кинетической энергии на срезе сопла к сумме кинетической энергии жидкости и потока чистого газа.

Для определения геометрических параметров сопла устройства пожаротушения предлагается разработать новую математическую модель зависимости статического давления, скорости потока огнетушащего вещества на координату длины сопла.

2.2.3 Разработка математической модели определения геометрических параметров сопла устройства с газодинамическим принципом распыления жидкости.

Синтез профиля газокапельного сопла, является сложной и неоднозначной задачей, для решения которой в общем случае используют уравнения движения, теплообмена, закона сохранения энергии, уравнения Клапейрона, закона неразрывности потока, записанные для газовой и капельной составляющей двухфазного потока.

Представим уравнения массового расхода для газовой и капельной фаз:

$$G_{\Gamma} = \rho_{\Gamma} f_{\Gamma} u_{\Gamma} = \text{const};$$
 (2.31)

$$G_{\kappa} = \rho_{\kappa} f_{\kappa} u_{\kappa} = \text{const}, \qquad (2.32)$$

где G_{Γ} – массовый расход газовой фазы, кг/с;

 $\rho_{\rm r}$ – плотность газа, кг/м³;

 f_{Γ} – площадь сечения газового потока, м²;

 u_{Γ} – скорость газа, м/с;

 G_{κ} – массовый расход капельной фазы, кг/с;

 ρ_{κ} – плотность капли, кг/м³;

 $f_{\rm K}$ – площадь сечения капельного потока, м²;

 $u_{\rm K}$ – скорость капли, м/с.

Сумма f_{Γ} и f_{κ} представляет собой площадь поперечного сечения сопла F, м², то есть:

$$f_{\Gamma} + f_{\kappa} = F. \tag{2.33}$$

Подставляя выражения для $f_{\rm r}$ и $f_{\rm k}$ из уравнений (2.31) и (2.32) в уравнение (2.33) получаем:

$$\frac{G_{\Gamma}}{\rho_{\Gamma}u_{\Gamma}} + \frac{G_{\kappa}}{\rho_{\kappa}u_{\kappa}} = F. \tag{2.34}$$

С другой стороны

$$F = \frac{\pi D^2}{4},\tag{2.35}$$

где D – диаметр сопла, м.

Подставляя правую часть уравнения (2.35) в уравнение (2.34) находим диаметр сопла:

$$D = \sqrt{\frac{4}{\pi} \left(\frac{G_{\Gamma}}{\rho_{\Gamma} u} + \frac{G_{\kappa}}{\rho_{\kappa} u_{\kappa}} \right)}.$$
 (2.36)

Таким образом, для нахождения профиля газокапельного сопла необходимо (при постоянных значениях G_{Γ} и G_{K}) найти выражения для ρ_{Γ} , u_{Γ} , u_{K} , как функций координаты x продольной оси сопла.

Для этого воспользуемся уравнением движения капельного потока и уравнениями конвективного теплообмена между каплями и газом внутри сопла:

$$G_{K} \frac{du_{K}}{dx} = -f_{K} \frac{dP}{dx} + \frac{f_{K}}{V_{K}} \frac{C_{X} \pi d_{K}^{2} \rho_{\Gamma} (u_{\Gamma} - u_{K}) |u_{\Gamma} - u_{K}|}{8}; \qquad (2.37)$$

$$G_{\kappa} \frac{di_{\kappa}}{dx} = \frac{6f_{\Gamma}}{d_{\kappa}} \alpha \left(T_{\Gamma} - T_{\kappa} \right); \tag{2.38}$$

$$G_{\Gamma} \frac{di_{\Gamma}}{dx} = -\frac{6f_{\Gamma}}{d_{\kappa}} \alpha \left(T_{\Gamma} - T_{\kappa} \right); \qquad (2.39)$$

где P – давление, Π а;

 $V_{\rm K}$ – объем капли, м³;

 $C_{\rm x} = \frac{24}{Re_{\rm k}} + \frac{4,4}{\sqrt{Re_{\rm k}}} + 0,32$ — коэффициент аэродинамического сопротивления;

$$Re_{\scriptscriptstyle
m K}=rac{(u_{\scriptscriptstyle
m \Gamma}-u_{\scriptscriptstyle
m K})d_{\scriptscriptstyle
m K}
ho_{\scriptscriptstyle
m \Gamma}}{\mu_{\scriptscriptstyle
m \Gamma}}$$
— число Рейнольдса;

 $d_{\text{к}}$ – диаметр капли, м;

 $\mu_{\scriptscriptstyle \Gamma}$ – коэффициент динамической вязкости газа, Па с;

 $i_{\kappa},\ i_{\Gamma}$ – удельные энтальпии капель и газа, Дж/кг;

 α – коэффициент теплоотдачи, $BT/(M^2K)$;

 $T_{\rm r}$, $T_{\rm k}$ – температуры газа и капель, К.

Плотность газа определим из уравнения Клапейрона:

$$\rho_{\Gamma} = \frac{P}{R_{\Gamma}T_{\Gamma}}; \tag{2.40}$$

где R_{Γ} — универсальная газовая постоянная, Дж/(кг·К) (для воздуха равна 287 Дж/(кг·К)).

Закон сохранения полной энергии двухфазного потока представим в виде суммы кинетической энергии и теплосодержания (энтальпии) каждой из фаз:

$$c_{\rm p}T_{\rm r} + \frac{u^2}{2} + g\left(cT_{\rm K} + \frac{u^2}{2}\right) = const;$$
 (2.41)

где $c_{\rm p}$ и c — теплоемкость газа при постоянном давлении и теплоемкость вещества капли (воды), Дж/(кг·К);

 $g = \frac{G_{\rm K}}{G_{\rm \Gamma}}$ — коэффициент загрузки двухфазного потока каплями.

В уравнениях (2.38 – 2.41) используются переменные величины T_{Γ} и T_{κ} .

Для оценки влияния T_{Γ} , T_{κ} на систему уравнений определили термодинамический процесс, протекающий в газокапельном сопле. Для этого вычислили показатель k_{π} адиабаты (изоэнтропы) двухфазного потока [101] преобразовав формулу для k_{π} в выражение:

$$k_{\rm g} = 1 + \frac{1}{1 + g \cdot \frac{c}{c_{\rm v}}} \cdot \frac{R}{c_{\rm v}}$$
 (2.42)

где c_v – теплоемкость газа при постоянном объеме, Дж/(кг K).

Численные значения физических величин, входящих в выражение (14) для двухфазного воздушно-капельного потока следующие: $c_v = 718$ Дж/(кг·К), c = 4183 Дж/(кг·К). Коэффициент загрузки потока каплями имеет оптимальный диапазон значений g = 30-40, при котором капельный поток имеет максимальную дальнобойность. Поэтому принимаем g = 40. Подставив численные значения физических величин в формулу (2.42), получаем $k_{\rm g} = 1$. Если показатель адиабаты $k_{\rm g} = 1$, то термодинамический процесс в газокапельном сопле с большой

достоверностью — изотермический. Это означает, что температура газа и капель не изменяется, то есть равна температуре T, K, окружающей среды:

$$T_{\Gamma} = T_{\kappa} = T = const.$$

а уравнения (2.38 - 2.39) можно исключить из общей системы уравнений. Дифференцируя уравнение (2.41) по переменной x и учитывая изотермичность процесса, получим:

$$u_{\Gamma} \frac{du_{\Gamma}}{dx} + gu_{\kappa} \frac{du_{\kappa}}{dx} = 0. \tag{2.43}$$

Преобразуем уравнение (2.37) с учетом формулы (2.32), формулы для объема капли:

$$V_{\rm K} = \frac{1}{6} \pi d_{\rm K}^3$$

а выражение $(u_{\Gamma} - u_{\kappa}) | u_{\Gamma} - u_{\kappa} |$ представим в виде $(u_{\Gamma} - u_{\kappa})^2$ поскольку всегда выполняется неравенство $u_{\Gamma} \ge u_{\kappa}$ (газовая фаза в пределах длины сопла является несущей). В результате получаем уравнение:

$$u_{K} \frac{du_{K}}{dx} = -\frac{1}{\rho_{K}} \frac{dP}{dx} + \frac{3}{4} C_{X} \frac{1}{d_{K}} \frac{\rho_{\Gamma}}{\rho_{K}} (u_{\Gamma} - u_{K})^{2}.$$
 (2.44)

Функция P(x) должна удовлетворять следующим требованиям:

- плавно изменяться по всей длине сопла;
- иметь максимум P_0 в начале сопла и минимум $P_{\rm a}$ атмосферное давление на срезе сопла;
 - производная $\frac{dP}{dx}$ в точках экстремумов должна быть равна нулю.

Алгебраическая функция $y = z^4 - 2z^2$ плавно изменяется и имеет два локальных экстремума на концах отрезка [0,1]. Преобразованием графика этой функции на указанном отрезке путем масштабирования, сдвига вдоль координатной оси OY, введением относительной переменной $0 \le \frac{x}{l} \le 1$ получена функция давления:

$$P = P_0 \left\{ \left(1 - \frac{P_a}{P_0} \right) \left[\left(\frac{x}{l} \right)^4 - 2 \left(\frac{x}{l} \right)^2 \right] + 1 \right\}, \tag{2.45}$$

где l — длина сопла, м, полностью удовлетворяющая вышеперечисленным требованиям, так-как

$$P(x = 0) = P_0$$
, $P(x = l) = P_a$, $P'(x = 0) = P'(x = l) = 0$.

Уравнения (2.36), (2.40), (2.43 – 2.45) образуют систему уравнений, позволяющую определить профиль газокапельного сопла:

$$\begin{cases} u_{\Gamma} \frac{du_{\Gamma}}{dx} + gu_{K} \frac{du_{K}}{dx} = 0; \\ u_{K} \frac{du_{K}}{dx} = -\frac{1}{\rho_{K}} \frac{dP}{dx} + \frac{3}{4} C_{X} \frac{1}{d_{K}} \frac{\rho_{\Gamma}}{\rho_{K}} (u_{\Gamma} - u_{K})^{2}; \\ \rho_{\Gamma} = \frac{P}{R_{\Gamma} T}; \\ P = P_{0} \left\{ \left(1 - \frac{P_{a}}{P_{0}} \right) \left[\left(\frac{x}{l} \right)^{4} - 2 \left(\frac{x}{l} \right)^{2} \right] + 1 \right\}; \\ D = \sqrt{\frac{4}{\pi}} \left(\frac{G_{\Gamma}}{\rho_{\mu}} + \frac{G_{K}}{\rho_{K}} \right). \end{cases}$$
(2.46)

Следует иметь ввиду, что в формуле (2.45) присутствует показатель l, поэтому кроме профиля сопла автоматически определяется и его длина. Изменяя l, получим соответствующий ему профиль сопла D(x), характеризующий прямую и инжекторную части сопла.

Первые четыре уравнения системы (2.46) позволяют получить функции ρ_{Γ} , u_{Γ} , u_{κ} , подставляя которые в последнее уравнение системы (2.46) получаем зависимость диаметра сопла от его длины (геометрический профиль) [102].

Предложенные уравнения краевой задачи (2.46) являются нелинейными уравнениями математической физики, и их реализация требует применения компьютерных методов.

При решении дифференциального уравнения методом Рунге-Кутта получены газодинамические параметры и параметры геометрии сопла устройства пожаротушения, которые представлены в таблице 2.1.

Таблица 2.1 – Расчетные газодинамические параметры и параметры геометрии сопла

Длина																	
сопла, мм	Координата X _i , мм	0	20	40	60	80	100	120	140	150							
150	Р, Мпа	0,5000	0,4920	0,4686	0,4312	0,3822	0,3250	0,2638	0,2040	0,1000							
	ρ·10 ⁵ , кг/м ³	0,5946	0,5851	0,5573	0,5128	0,4546	0,3865	0,3138	0,2426	0,2100							
	Uг, м/с	5	17	24	35	40	53	65	75	89							
	Uк, м/c	5	6	7	10	17	28	33	38	44							
	D, мм	21,71	11,87	10,24	8,84	8,78	8,27	8,29	8,78	8,66			•				
200	Координата X _i , мм	0	20	40	60	80	100	120	140	160	180	200					
	Р, Мпа	0,5000	0,4920	0,4686	0,4312	0,3822	0,3250	0,2638	0,2040	0,1518	0,1144	0,1000					
	ρ·10 ⁵ , кг/м ³	0,5946	0,5851	0,5573	0,5128	0,4546	0,3865	0,3138	0,2426	0,1806	0,1361	0,1189					
	Uг, м/с	5	19	28	40	49	61	72	86	96	100	102					
	Uк, м/c	5	6	7	13	26	31	35	40	45	50	53					
	D, мм	21,71	11,23	9,48	8,27	7,93	7,71	7,88	8,19	8,99	10,15	10,75		1	•		
250	Координата X _i , мм	0	20	40	60	80	100	120	140	160	180	200	220	250			
	Р, Мпа	0,5000	0,4949	0,4798	0,4552	0,4223	0,3822	0,3369	0,2885	0,2394	0,1928	0,1518	0,1204	0,1000			
	ρ·105, кг/м³	0,5946	0,5885	0,5706	0,5414	0,5022	0,4546	0,4007	0,3430	0,2847	0,2292	0,1806	0,1431	0,1189			
	∪г, м/с	5	20	28	41	50	64	66	70	76	80	90	97	105			
	Uк, м/c	5	6	7	14	28	33	35	39	40	43	49	52	61			
	D, мм	21,71	10,91	9,37	7,95	7,47	6,94	7,28	7,64	8,05	8,74	9,29	10,05	10,75			
300	Координата X _i , мм	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300
	Р, Мпа	0,5000	0,4965	0,4859	0,4686	0,4451	0,4160	0,3822	0,3447	0,3048	0,2638	0,2235	0,1855	0,1518	0,1248	0,1066	0,1000
	ρ·10 ⁵ , кг/м ³	0,5946	0,5904	0,5778	0,5573	0,5293	0,4948	0,4546	0,4100	0,3625	0,3138	0,2657	0,2205	0,1806	0,1484	0,1268	0,1189
	∪г, м/с	5	21	29	42	51	65	66	70	74	75	80	85	90	99	106	110
	Uк, м/с	5	6	7	15	29	33	35	37	40	43	49	52	54	57	60	65
	D, мм	21,71	10,63	9,14	7,74	7,20	6,60	6,83	6,99	7,23	7,72	8,12	8,65	9,77	9,77	10,21	10,35

В разработанной математической модели (2.46), характеризующая скоростные потоки, проходящие в сопле через динамические составляющие их частей в виде дифференциальных уравнений, начальные условия дифференциальных уравнений задаются в начале каждого участка, после чего осуществляется итеративная процедура прогнозированных значений показателей на этом участке.

Графики изменения скорости газа и капли вдоль сопла, а также зависимости давления и плотности газа от длины сопла представлены на рисунках 2.14 – 2.21.

Рисунок 2.14 – График изменения скорости газа и капли вдоль сопла 150 мм

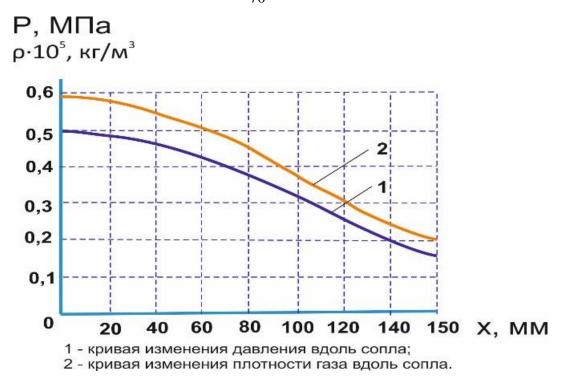


Рисунок 2.15 — График зависимости давления и плотности газа от длины сопла $150~\mathrm{mm}$

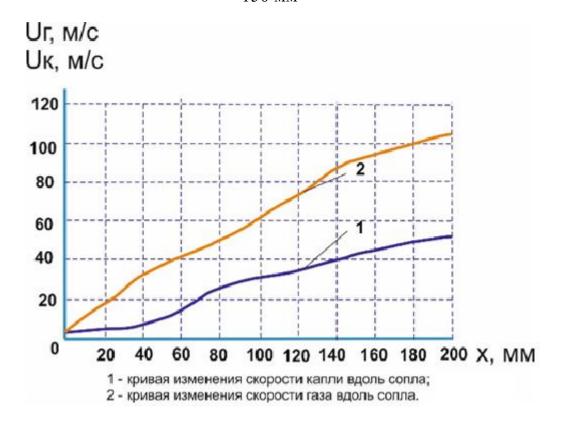


Рисунок 2.16 – График изменения скорости газа и капли вдоль сопла $200 \ {\rm MM}$

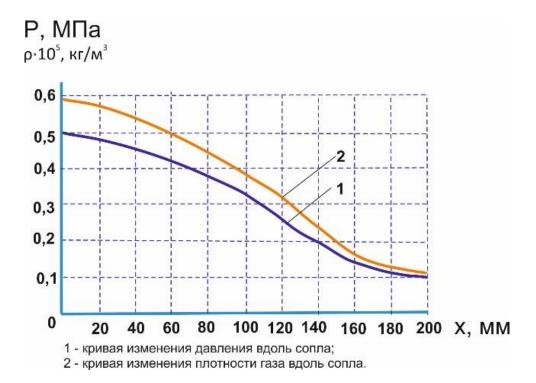


Рисунок 2.17 — График зависимости давления и плотности газа от длины сопла 200 мм

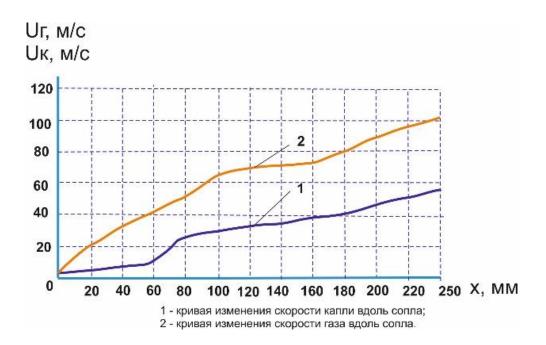


Рисунок 2.18 – График изменения скорости газа и капли вдоль сопла 250 мм

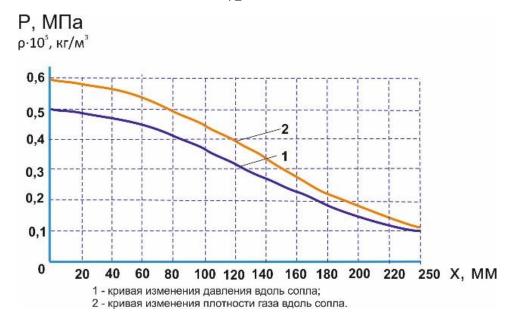


Рисунок 2.19 – График зависимости давления и плотности газа от длины сопла 250 мм

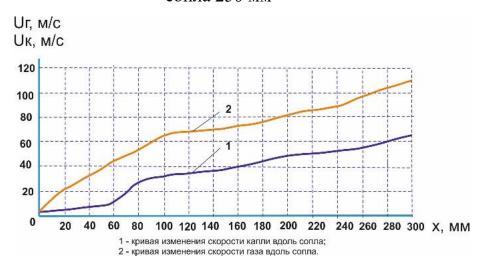


Рисунок 2.20– График изменения скорости газа и капли вдоль сопла 300 мм

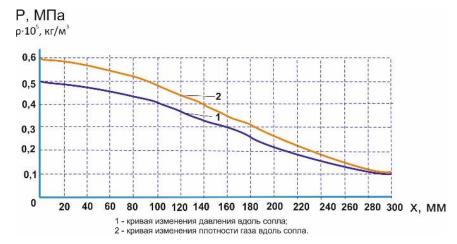


Рисунок 2.21 — График зависимости давления и плотности газа от длины сопла 300 мм

Проведен расчет двухфазного газокапельного потока с использованием уравнения движения, закона сохранения энергии, уравнения неразрывности уравнения Клапейрона, уравнения потока, ДЛЯ показателя изоэнтропы газокапельной смеси. Предложена алгебраическая функция зависимости статического давления от координаты длины сопла. Получена система уравнений, включающая дифференциальные, алгебраические уравнения и предложенную функцию давления, позволяющая провести прогноз процессов в сопле и определить рациональный геометрический профиль сопла, при котором будет наиболее эффективное выполнено условие ликвидации горения.

На Рисунках 2.22-2.25 представлены рассчитанные сопла устройств пожаротушения с газодинамическим принципом распыления жидкости.

Рисунок 2.22 – Сопло устройства пожаротушения длиной 150 мм

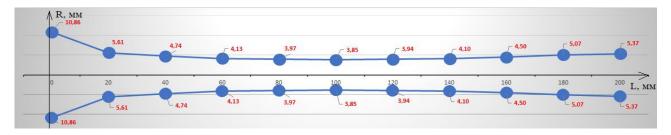


Рисунок 2.23 – Сопло устройства пожаротушения длиной 200 мм

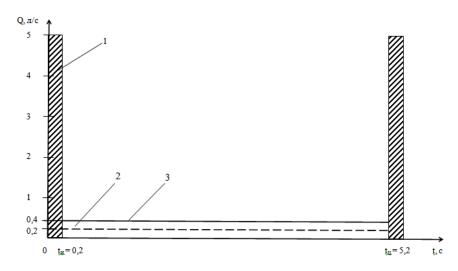

Рисунок 2.24 — Сопло устройства пожаротушения длиной 250 мм

Рисунок 2.25 – Сопло устройства пожаротушения длиной 300мм

2.3 Сравнительный анализ основных характеристик пожаротушащих устройств, реализующих дискретный и газодинамический принципом распыления жидкости

Принципы работы пожаротушащих устройств, реализующих дискретный и газодинамический принципы распыления жидкости, наиболее наглядно можно объяснить с помощью графика расхода пожаротушащего вещества, показанного на Рисунке 2.26.

1 – прямоугольный импульс; 2 – средний расход огнетушащего вещества дискретного способа подачи; 3 – график расхода огнетушащего вещества

Рисунок 2.26 – График расхода пожаротушащего вещества при дискретном и газодинамическом принципах распыления жидкости

При дискретном способе подачи на срезе ствола устройства пожаротушения формируется прямоугольный импульс 1, длительность которого не

превышает 0,2 с, а мгновенный импульсный расход составляет не менее 5 дм³/с огнетушащего вещества. После выброса огнетушащего вещества жидкостную и газовую камеры необходимо зарядить новой дискретной порцией воды и сжатого воздуха. Длительность зарядки составляет примерно 5 с, не зависит от действий оператора, а определяется конструктивными параметрами устройства. Таким образом, полный цикл равен сумме длительности импульса и длительности зарядки и составляет около 5,2 с. Если принять во внимание, что площадь импульса 1 составляет 1 дм³, то есть:

$$Q \cdot t_{\mathsf{H}} = 1 \; \mathsf{дм}^3, \tag{2.47}$$

где Q – расход, л/с;

 $t_{\rm H}$ – время импульса, с,

тогда средний расход за полный цикл составляет $1/5,2 \approx 0,2$ л/с.

Таким образом, дискретный способ характеризуется высокой импульсной интенсивностью подачи огнетущащего вещества, кратковременностью и низким средним значением за цикл. Реактивная сила, действующая на неподвижный ствол устройства пожаротушения дискретного действия, равна произведению массового расхода пожаротушащего вещества на его среднюю скорость на срезе ствола.

Если принять среднюю скорость ω_0 , м/с равную 60 м/с, то реактивная сила $R_{\rm p}$, H составляет:

$$R_{\rm p} = G \cdot \omega_0, \tag{2.48}$$

где G — массовый расход пожаротушащего вещества, кг/с.

Учитывая, что

$$G = \rho \cdot Q,\tag{2.49}$$

где ρ – плотность воды, кг/л,

получим

$$R_p = 1 \cdot 5 \cdot 60 = 300 \text{ H}$$

Следовательно, при дискретной подаче огнетушащего вещества, на оператора действует большая реактивная сила отдачи равная 300 H, а поэтому ствол комплектуется двумя рукоятками и ремнем для его надежного удержания.

На основании вышеизложенного следует, что отличительными особенностями дискретного способа пожаротушения являются:

- высокий и кратковременный расход огнетушащего вещества;
- низкий средний расход за технологический цикл;
- высокое значение реактивной силы отдачи, ограничивающее дальнобойность переносного устройства пожаротушения (по причине предельно допустимой силы отдачи).

Устройства пожаротушения газодинамическим способом c подачи огнетушащего вещества имеют расход пожаротушащего вещества равный примерно 0,4 л/с. По своему принципу работы они являются устройствами газодинамического способа действия, однако возможен и прерывистый способ подачи путем нажатия на курок. На Рисунке 2.26 (прямая 3) показан график подачи пожаротушащего вещества устройством газодинамического способа действия. Из устройство осуществляет графика видно, ЭТО постоянную ЧТО подачу огнетушащего вещества в течение всего времени тушения пожара, однако, возможно прерывание подачи при отпускании курка. Таким образом, длительность подачи огнетушащего вещества регулируется оператором исходя из конкретной ситуации. Фактические значения расходов жидкости промышленно освоенных переносных ранцевых устройств пожаротушения таковы, что средний расход устройств газодинамического способа действия примерно в два раза превышают средний расход за цикл устройств дискретного действия (0,4 л/с против 0,2 л/с). Поэтому средняя интенсивность подачи пожаротушащего вещества в устройствах газодинамического действия выше, чем в устройствах дискретного действия.

Найдем реактивную силу, действующую в устройствах газодинамического способа действия для длины ствола 200 мм. Исходя из проведенных расчетов получены такие параметры:

$$U_{\Gamma} = 102 \text{ m/c}$$
; $U_{K} = 53 \text{ m/c}$; $G_{\Gamma} = 11 \cdot 10^{-3} \text{ kg/c}$; $G_{K} = 0.38 \text{ kg/c}$.

Реактивную силу отдачи устройства с газодинамическим принципом находим по формуле:

$$R_{p} = G_{\Gamma} \cdot U_{\Gamma} + G_{K} \cdot U_{K} \tag{2.50}$$

реактивная сила R_p равна:

$$R_p = 11 \cdot 10^{-3} \cdot 102 + 0.38 \cdot 53 = 21.3 \text{ H}$$

Проведенные числовые расчеты устройств с дискретной и газодинамическим принципами распыления жидкости, представленные в таблице 2.2, позволяют провести сравнительный анализ основных динамических параметров.

Таблица 2.2 — Сравнительные параметры устройств с дискретным и газодинамическим принципом распыления жидкости

	Параметры					
Принцип	Скорость	Расход воды,	Реактивная сила			
распыления	жидкости, м/с	кг/с	отдачи, Н			
Газодинамический	53	0,38	21,3			
Дискретный	46	0,2	300			
		(за полный цикл)				

Из таблицы 2.2 видно, что скорость жидкости на срезе ствола и среднемассовый расход воды за полный цикл в устройстве с газодинамическим принципом распыления больше чем в устройстве с дискретной подачей жидкости, а реактивная сила отдачи — меньше более чем на порядок. Кроме того, конструктивное исполнение ствола устройства с дискретной подачей жидкости

является сложным из-за специальной конструкции быстродействующего клапана, необходимостью комплектования двухступенчатым редукционным клапаном.

На основании проведенного анализа можно сделать вывод, что оптимальной областью применения пожаротушащих устройств с дискретной подачей огнетушащего вещества являются пожары класса А. Пожары класса В недоступны для тушения устройств с дискретной подачей ввиду большого ударного импульса, действующего на жидкое горючее и приводящее к его разбрызгиванию и активизации пожара.

Устройство пожаротушения с газодинамическим способом распыления жидкости более универсально и позволяет тушить пожары классов A, B и E. Кроме того, в этих устройствах нагрузка на пожарного (21,3 H) на порядок ниже по сравнению с устройствами с дискретной подачей пожаротушащего вещества (300 H). Это отражается на конструктивном решении устройств с газодинамическим способом действиям — они выполнены в виде пистолета для удержания одной рукой. Поэтому, можно сделать вывод, что устройства пожаротушения с газодинамическим способом подачи огнетушащих веществ, является более безопасным для оператора.

Учитывая негативное воздействие реактивной силы отдачи на пожарного (потеря устойчивости, вероятность получения травмы) и результаты сравнительного анализа основных динамических характеристик обосновано принято решение, что наиболее перспективным направлением разработки является устройство с газодинамическим принципом распыления жидкости.

2.4 Исследования взаимодействия капельного потока струи и теплового восходящего потока пожара.

На эффективность тушения пожара влияют показатели проникающей способности струи тонкораспыленной воды в зону горения и скорость испарения капель. Для уточнения этих показателей необходимо провести расчет: критических

значений скоростей подачи пожаротушащего вещества, выше которых тонкораспыленная вода преодолевает тепловой барьер пламени пожара и попадает на поверхность горящего материала; критических значений диаметров капель реализуется распыленной струи, ниже которых импульсный режим взаимодействия на границе пламени пожара.

Пожаротушащие установки с тонкораспыленным способом подачи жидкости (при среднеарифметическом диаметре капли ≤ 150 мкм) в реальных условиях пожара работают в импульсном режиме, несмотря на непрерывную подачу огнетушащего вещества. Если импульс капельного потока превышает импульс потоков (сверхкритический восходящих тепловых импульс), увеличивается проникающая способность тонкораспыленной воды, сокращается время подавления пожара, сокращается потребный объем пожаротушащего вещества, то есть повышается эффективность пожаротушения. В этом случае способствует диаметра капли повышению эффективности уменьшение пожаротушения. В противном случае (если импульс тонкораспыленной струи докритический) применение струй с тонкораспыленной водой неэффективно. Поэтому основной характеристикой пожаротушащего устройства является начальная скорость капельного потока [103]. Дальность подачи капельного потока является производной характеристикой от начальной скорости. Иными словами, высокоэффективным быть может только высокоскоростной поток тонкораспыленной жидкости, но не обязательно дальнобойный.

Для определения критических условий возможности капли достигать очага горения предложено использовать параметр, основывающийся на соотношении кинетической энергии капель и тепловой энергии очага горения. Положительный результат тушения пламени может быть достигнут только при следующем условии [104]:

$$P_e > K/Q_2, \tag{2.51}$$

где P_e – параметр критических условий;

K – кинетический параметр потока капель;

 Q_2 – суммарный тепловой параметр пламени.

Для оценки возможности проникновения капельного потока в очаг пожара используется соотношение между импульсами капельной струи и восходящего теплового потока пожара, которое можно представить в виде:

$$I_{\rm c} > I_{\rm m}$$
, (2.52)

где $I_{\rm c}$ – импульс потока капель, H;

 $I_{\rm II}$ – импульс теплового потока пожара, Н.

Эффективность пожаротушения тонкораспыленной водой определяется возможностью реализации импульсного режима взаимодействия потока и пламени [105].

Поэтому представим неравенство (2.52) в виде отношения:

$$I_{\rm c}/I_{\rm n} > 1.$$
 (2.53)

Известно, что импульс любой струи равен произведению средней скорости на массовый расход. Запишем левую часть неравенства (2.53) в виде $\omega_{\rm c} G_{\rm c}/\omega_{\rm n} G_{\rm n}$ и выполним следующие преобразования:

$$\frac{\omega_{\rm c}G_{\rm c}}{\omega_{\rm n}G_{\rm n}} = \frac{\omega_{\rm c}^2 m_{\rm c}\omega_{\rm n}St}{\omega_{\rm n}^2 m_{\rm n}\omega_{\rm c}St} = \frac{\omega_{\rm c}^2 m_{\rm c}V_{\rm n}}{\omega_{\rm n}^2 m_{\rm n}V_{\rm c}} = \frac{\rho_{\rm c}\omega_{\rm c}^2}{\rho_{\rm n}\omega_{\rm n}^2} = \frac{\rho_{\rm c}\omega_{\rm c}^2}{2} : \frac{\rho_{\rm n}\omega_{\rm n}^2}{2} = \frac{P_{\nu,\rm c}}{P_{\nu,\rm n}},$$

где $\omega_{\rm c},\ \omega_{\rm n}$ — средняя скорость капельного потока и тепловых потоков газов, м/с; $G_{\rm c},\ G_{\rm n}$ — массовый расход капельного потока и теплового потока газов, кг/с; $m_{\rm c},\ m_{\rm n}$ — масса капель и масса тепловых потоков газов, кг;

t – время, с;

 $V_{\rm c}, V_{\rm n}$ – объем струи и тепловых потоков газов, м³;

 ρ_c , ρ_π — плотность капель и теплового потока газов, кг/м³;

 $P_{v,c}$ – скоростной напор струи, Па;

 $P_{\nu,\Pi}$ – скоростной напор восходящего газового потока, Па.

Таким образом, отношение импульсов капельной струи и восходящего теплового газового потока равно отношению скоростных напоров капельной струи и пламени:

$$I_{\rm c} / I_{\rm m} = P_{\rm v.c} / P_{\rm v.m.}$$

Физический смысл величин $P_{\nu,c}$, $P_{\nu,n}$ — члены, входящие в уравнение Бернулли, представляющие собой удельную кинетическую энергию (кинетическая энергия в единице объема).

Скоростной напор пламени представим через параметры пожара. Максимальная скорость пламени равна:

$$\omega_{\Pi,\text{max}} = CQ_{\text{max}}^{0,2}, \tag{2.54}$$

где $C = 2 - \kappa \text{оэффициент}, \text{м/(кВт}^{0,2} \cdot \text{c});$

 Q_{max} – максимальная тепловая мощность пожара, кВт.

С учетом того, что тепловая мощность постоянна и максимальна, имеем:

$$Q_{\text{max}} = \eta Q_{\text{H}} \Psi_{\text{УД}} S_{\text{max}}, \qquad (2.55)$$

где η – коэффициент полноты сгорания;

 $Q_{\scriptscriptstyle \rm H}$ – низшая теплота сгорания, кДж/кг;

 $\psi_{y_{\text{M}}}-$ удельная массовая скорость выгорания, кг/(c·м²);

 $S_{\rm max}$ – максимальная площадь пожара, м².

С учетом (2.54) скоростной напор пламени равен:

$$P_{\nu,\Pi} = \frac{\rho_{\Pi} C^2 Q_{\max}^{0,4}}{2}.$$

Тогда выражение (2.54) можно записать в виде:

$$I_{\rm c} / I_{\rm m} = P_{\nu,\rm c} / \left(\frac{\rho_{\rm m} C^2 Q_{\rm max}^{0,4}}{2} \right).$$
 (2.56)

Анализируя выражения (2.51) и (2.56), приходим к выводу, что физический смысл их правых частей близок, поскольку под кинетическим параметром K можно понимать удельную кинетическую энергию капельного потока $P_{\nu,c}$, а знаменатель правых частей (2.51) и (2.56) определяет тепловая мощность пожара. Отличие заключается в том, что в предложенном критерии (2.56) учитывается плотность ρ_{π} теплового восходящего потока, которая несомненно влияет на внедрение капель в очаг горения.

На основании выражений (2.56) и (2.51) получаем неравенство:

$$P_{\nu,c} > \frac{\rho_{\Pi} C^2 Q_{\text{max}}^{0,4}}{2}$$
 или $\frac{\rho_c \omega_c^2}{2} > \frac{\rho_{\Pi} C^2 Q_{\text{max}}^{0,4}}{2}$ (2.57)

Из выражения (2.57) находим критическую скорость капель на границе пламени, достаточную для проникновения в очаг горения:

$$\omega_{\rm c} > \sqrt{\frac{\rho_{\rm II}}{\rho_{\rm c}}} C Q_{\rm max}^{0,2} \quad . \tag{2.58}$$

Подставляя Q_{max} из выражения (2.55) в (2.58), получаем:

$$\omega_{\rm c} > \sqrt{\frac{\rho_{\rm II}}{\rho_{\rm c}}} C \left(\eta Q_{\rm H} \psi_{\rm yg} S_{\rm max} \right)^{0,2}. \tag{2.59}$$

Особенностью формулы (2.59) является необходимость определения плотности потока ρ_c распыленной воды (не плотности капли). Именно через ρ_c осуществляется влияние тонкости распыления на проникающую способность капельной струи. Измерения воздушного потока, увлекаемого струями, показали, что напор струи со средним размером капель менее 1 мм полностью превращается в кинетическую энергию воздушного потока на расстоянии более 1,8 м от насадка. Напор струй с крупными каплями диаметром 1,5...3,5 мм превращается в кинетическую энергию воздушного потока только на 50 %. Из этого следует, что тонкораспыленной (c воды диаметром ДЛЯ капель 100...200 мкм) плотность потока в первом приближении можно взять равной плотности воздуха.

Рассчитаем критические скорости внедрения капель тонкораспыленной воды в модельные очаги пожаров классов 1А и 89В. Модель очага пожара класса 1А характеризует площадь свободной поверхности $S_{\rm max}=13,89~{\rm m}^2$. При горении древесины принимаем температуру пламени равной 625 °C. При этой температуре $\rho_{\rm n}=0,394~{\rm kr/m}^3$; $\psi_{\rm yg}=0,007~{\rm kr/(m^2c)}$; $Q_{\rm H}=13,8~{\rm MДж/kr}$; $\eta=0,97$. Подстановка этих исходных данных в выражение (9) при $\rho_{\rm c}=1,204~{\rm kr/m}^3$ дает скорость $\omega_{\rm c,A}$ капельного потока, необходимую для преодоления теплового барьера модельного очага пожара класса $3A~\omega_{\rm c,A}>4,8~{\rm m/c}$. Аналогичные расчеты, проведенные с целью определения скорости капельного потока $\omega_{\rm c,B}$ для преодоления теплового барьера модельного очага пожара класса 89 A при $\eta=0,87$; $Q_{\rm H}=41,87~{\rm MДж/kr}$; $\psi_{\rm yg}=0,062~{\rm kr/(m^2 \cdot c)}$; $S_{\rm max}=2,8~{\rm m^2}$; $\rho_{\rm n}=0,237~{\rm kr/m^3}$ (при температуре 1200 °C) дают $\omega_{\rm c,B}>5,1~{\rm m/c}$.

Найдем критический диаметр капли, определяющий переход от гравитационного к импульсному режиму взаимодействия капельного потока и

пламени. Наибольшее сопротивление будет оказано восходящим тепловым газовым потоком при движении капельного потока вдоль оси пламени сверху вниз. Поэтому в классическом дифференциальном уравнении движения капли необходимо учитывать ее массу:

$$m_{\kappa} \frac{d\bar{u}_{\kappa}}{d\tau} = \pm m_{\kappa} \bar{g} - C_D \psi(D) \rho f_{\kappa} \frac{|U|\bar{U}}{2}, \qquad (2.60)$$

где $m_{\rm K}$ – масса капли, кг;

 $\overline{u}_{\rm K}$ – скорость капли, м/с;

 τ – время, с;

 \bar{g} – ускорение свободного падения, м/c²;

 C_D – коэффициент аэродинамического сопротивления;

 $\psi(D)$ – функция, учитывающая деформацию капли;

ρ – плотность среды;

 $f_{\rm K}$ – миделевое сечение капли, м²;

 \overline{U} – вектор относительной скорости капли.

Приведенное уравнение описывает динамику движения капли от среза ствола до границы пламени пожара. При входе в пламя появляется выталкивающая сила, изменяется плотность среды и относительная скорость капли. Очевидно, существует некоторый критический диаметр капли, меньше которого она не сможет попасть на поверхность горящего материала. Такое предположение справедливо для тонкораспыленной воды, когда за счет малой массы капли ее импульс не превосходит импульс восходящего теплового потока. Условие, при котором импульс пламени останавливает движение капли, получим из уравнения (2.60), приравнивая силу инерции нулю и проектируя силы на вертикальную ось, направленную в центр очага пожара:

$$m_{\kappa}g = C_D \psi(D) \rho f_{\kappa} U^2 / 2. \tag{2.61}$$

На границе взаимодействия капли и восходящего теплового потока сила тяжести капли P уменьшается за счет действия выталкивающей силы:

$$P = m_{K}g - \rho_{\Pi} g \nu_{K} = (1 - \rho_{\Pi}/\rho_{K}) m_{K}g, \qquad (2.62)$$

где ρ_{κ} – плотность капли, кг/м³;

 $v_{\rm K}$ – объем капли, м³.

Правая часть уравнения (2.61) на границе с восходящим тепловым потоком равна:

$$C_D \rho_{\Pi} f_{\kappa} \omega_{\Pi}^2 / 2. \tag{2.63}$$

Выражение (2.63) получено при проектировании вектора скорости пламени на вертикальную ось, направленную снизу вверх, то есть $U = \omega_{\rm k} - (-\omega_{\rm n}) = \omega_{\rm k} + \omega_{\rm n}$. Поскольку в состоянии равновесия $\omega_{\rm k} = 0$, то $U = \omega_{\rm n}$. В состоянии равновесия принимаем $\psi(D) = 1$, то есть считаем каплю недеформированной, при этом уравнение равновесия принимает вид:

$$(1 - \rho_{\Pi}/\rho_{K}) m_{K}g = C_{D}\rho_{\Pi}f_{K}\omega_{\Pi}^{2}/2.$$

Подставляя вместо ω_{π} выражение из уравнений (2.54) и (2.55), получаем:

$$(1 - \rho_{\Pi}/\rho_{K}) m_{K}g = C_{D}\rho_{\Pi}f_{K}C^{2} (\eta Q_{H}\psi_{YJ}S_{max})^{0,4}/2.$$
 (2.64)

Массу капли находим по формуле:

$$m_{\rm K} = \rho_{\rm K} \pi d^3/6$$

где d – диаметр капли, м.

Коэффициент аэродинамического сопротивления равен:

$$C_D = 24 / \text{Re} + 4,4\sqrt{\text{Re}} + 0,32$$
,

где Re =
$$\frac{U_{\kappa}d}{v}$$
 – число Рейнольдса;

 ν – коэффициент кинематической вязкости тепловых газов, м 2 /с.

Подставляя выражения для m_{κ} , C_D и Re в уравнение (2.64), получаем алгебраическое уравнение относительно d.

$$g(\rho_{\rm K} - \rho_{\rm \Pi} - 1)d^2 - 0.24C^2 (\eta Q_{\rm H} \psi_{\rm yd} S)^{0.4} d - 3.3C (\eta Q_{\rm H} \psi_{\rm yd} S)^{0.3} \sqrt{\nu C} \sqrt{d} - 18\nu C (\eta Q_{\rm H} \psi_{\rm yd} S)^{0.2} = 0.$$
(2.65)

Путем замены переменной, уравнение (2.65) сводится к решению алгебраического уравнения четвертой степени, корни которого можно найти аналитически. Ввиду громоздкости выражений для корней решение уравнения (2.65) находим с помощью компьютерной программы Марle 13.

Решения уравнения (2.65) найдены для мощностей, соответствующих модельным очагам пожара классов 3A и 89B при $\rho_{\Pi}=0,394$ кг/м³; $\nu=1,02\cdot10^{-4}$ м²/с – для модельного очага класса 3A (при температуре 625 °C) и $\rho_{\Pi}=0,237$ кг/м³; $\nu=2,34\cdot10^{-4}$ м²/с – для модельного очага класса 89B (при температуре 1200 °C) [106].

Получены следующие значения критических диаметров капель, при которых реализуется режим взаимодействия огнетушащей струи и восходящих тепловых потоков пожара: для очага пожара класса 3A d = 1,80 мм, для очага пожара класса 89B d = 2,26 мм.

Обоснованы параметры капельного потока жидкости для преодоления теплового барьера пожара. Получено условие для определения критической скорости струи, при которой обеспечивается преодоление теплового барьера пламени и попадание капель на поверхность горящего материала. Получено выражение для определения критического диаметра капель, меньше которого реализуется режим взаимодействия, при котором деформируется и разрушается пламя, растягиваются зоны реакции и резко повышается проникающая способность капель, повышается эффективность тушения пожара.

В результате численных расчетов установлено, что для осуществления импульсного режима взаимодействия струи и пламени модельного очага пожара класса 3A диаметр капель должен быть не более 1,80 мм, а скорость — не менее 4,8 м/с. Для модельного очага пожара класса 89B вышеупомянутые параметры соответственно равны 2,26 мм и 5,1 м/с.

Выводы к разделу 2.

- 1. В результате проведенных исследований разработана математическая модель динамических процессов в стволе устройства пожаротушения с дискретным принципом распыления жидкости, учитывающая влияние потерь на ускорение пожаротушащей жидкости и местное сопротивление при переходе от ствола к насадке, а также взаимосвязь конструктивных и газодинамических параметров, что позволяет научно обосновывать технические требования на этапе проектирования импульсного пожаротушащего устройства, определить влияние конструктивных параметров на основные характеристики: скорость струи, расход жидкости, расход газа, время импульса, реактивную силу.
- 2. Разработанная математическая модель (2.12) является сложной, представляющая собой нелинейную систему дифференциальных уравнений математической физики, поэтому при соответствующих предположениях была разработана математическая модель (2.26), рассмотренных физических процессов

в виде одного дифференциального уравнения второго порядка, позволяющая установить связи между конструктивными и режимными параметрами огнетушащего устройства. Полученные расчетным путем динамической характеристики: закон движения жидкости в стволе, скорость и ускорение жидкости, массовый расход жидкости, реактивная сила отдачи, время истечения жидкости, могут быть использованы для сравнительной оценки различных типов ранцевых пожаротушащих устройств.

- 3. Разработана математическая модель движения газокапельного потока в сопле устройства с газодинамическим принципом распыления жидкости, в которой предложена новая алгебраическая функция давления, удовлетворяющая плавности изменения давления по длине сопла, наличию максимума в начале и минимума на его срезе, что позволило выполнить численные исследования, получить рациональный профиль сопла и повысить эффективность тушения пожара
- 4. На основании анализа результатов исследования физических процессов, конструкции, работу и результатов проведенных расчетов устройств с дискретной и газодинамической принципами распыления жидкости, можно сделать вывод:
- устройства с дискретной принципом, в отличие от устройств с газодинамическим, имеет более сложную конструкцию, которая снабжена быстродействующим обратным клапаном, выполненный из титана; соответственно и дорогостоящую в изготовлении;
- устройства с дискретным принципом имеет небольшой средний объемный расход воды за один цикл;
- дальность газокапельного потока устройства с дискретным принципом составляет до 10 м, в отличие от устройств с газодинамическим дальность составляет до 15 м, а соответственно и эффективнее при ликвидации пожара;
- при дискретном принципе распыления жидкости, в отличие от устройств с газодинамическим принципом, на пожарного действует большой импульс реактивной силы отдачи ствола равная около 300 Н (газодинамический принцип около 22 Н). В результате силового воздействия от устройства с дискретным принципом возможна потеря устойчивости пожарного и получение травмы.

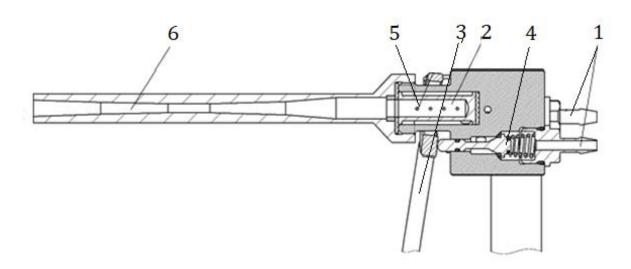
- 5. На основании вышеприведенных результатов перспективным направлением дальнейшего исследования было выбрано направление по разработке устройства с газодинамическим принципом распыления жидкости.
- Адекватность разработанной математической модели, описывающей процессы в сопле устройства с газодинамическим принципом распыления жидкости и геометрические размеры участков при соответствующих значениях параметров, должны быть подтверждены в процессе экспериментальных профиля испытаний. Оптимальность геометрического проверяется только экспериментальным путем в соответствии с выбранным критерием эффективности устройства, например, дальностью доставки пожаротушащего вещества, скорости газокапельного потока, диаметра капель и определения реактивной силы отдачи.

РАЗДЕЛ 3

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЭФФЕКТИВНОСТИ УСТРОЙСТВА ПОЖАРОТУШЕНИЯ С ГАЗОДИНАМИЧЕСКИМ ПРИНЦИПОМ РАСПЫЛЕНИЯ ЖИДКОСТИ

3.1 Методика проведения экспериментальных исследований

Объектом исследования являются внутрикамерные газодинамические процессы, протекающие в сопле устройства пожаротушения с газодинамическим принципом распыления жидкости. Испытания проводились в лабораторных условиях и на испытательной площадке НИИ «Респиратор» МЧС ДНР. Цель испытаний - определение соответствия правильности проведенных расчетов геометрических параметров сопла устройства пожаротушения с газодинамическим принципом распыления жидкости для достижения эффективной ликвидации горения и безопасности оператора.


Для достижения цели необходимо решить следующие задачи:

- проведение выбора узлов и элементов для разработки и изготовления экспериментального образца устройства пожаротушения с газодинамическим принципом распыления жидкости;
- определение дальности и скорости газокапельного потока, диаметра капель воды;
- определение реактивной силы отдачи устройства пожаротушения действующая на оператора при подаче газокапельного потока;
- определение показателей характеристик соответствия технических характеристик устройства пожаротушения.

Для достижения каждой из поставленных задач необходимо провести отдельные экспериментальные исследования с разработкой организационнометодических документов.

3.2 Выбор узлов и элементов конструкции экспериментального образца устройства пожаротушения с газодинамическим принципом распыления жидкости

Для управления подачей газокапельного потока разработано и изготовлено устройство пожаротушения с газодинамическим принципом распыления жидкости (далее — устройство пожаротушения). Проработка каждого узла и элементов устройства пожаротушения проводились в лабораторных условиях отдела специальных средств ведения аварийно-спасательных работ НИИГД «Респиратор» МЧС ДНР. Для изготовления конструкции устройства пожаротушения разработаны рабочие чертежи. При этом проработан вопрос замены сопел разных размерностей на устройство пожаротушения (Рисунок 3.1).

1 — штуцера подвода воды и газа; 2 — корпус; 3 — курок; 4 — клапан; 5 —камера смешения; 6 — сопло

Рисунок 3.1 – Схема устройства пожаротушения

Элементы устройства пожаротушения: корпус, распылитель, сопло Цилиндрическая поверхность распылителя снабжена отверстиями диаметром 1,0...1,6 мм для разделения потока воды на отдельные струйки (Рисунок 3.2).

1 – распылитель; 2 – корпус; 3 – сопло

Рисунок 3.2 – Конструктивные элементы устройства пожаротушения

Внутренняя цилиндрическая поверхность корпуса и наружная цилиндрическая поверхность распылителя образуют камеру распыления. Проходя через отверстия в распылителе отдельные струйки попадают во внутреннюю цилиндрическую полость распылителя (Рисунок 3.1). Далее газокапельный поток попадает в сопло, где происходит газодинамические процессы.

На участках L_1 — L_2 происходит смешивание газокапельного потока, при этом увеличивается давление в объеме участка (Рисунок 3.3). В наименьшем сечении газодинамического сопла происходит выравнивание скоростей жидких частиц L_2 — L_3 . Высокоскоростной газовый поток, преодолевая силы поверхностного натяжения, разрывает струйки воды на отдельные капли и выносит их в профилированный канал сопла L_3 — L_4 . В расширяющейся части газодинамического сопла капли разгоняются и выбрасываются в окружающую атмосферу с большой начальной скоростью.

На основании проведенных расчетов (раздел 2 и табл. 2.1), были разработаны рабочие чертежи, по которым изготовлены четыре варианта сопел с разными геометрическими параметрами.

Следует отметить, что геометрия сопла устройства пожаротушения состоит из участков трех тел вращения [107] (Рисунок 3.3):

- 1 участок конус, длиной $L_1 L_2$, мм;
- 2 участок цилиндр, длиной $L_2 L_3$, мм;
- 3 участок конус, длиной $L_3 L_4$, мм.

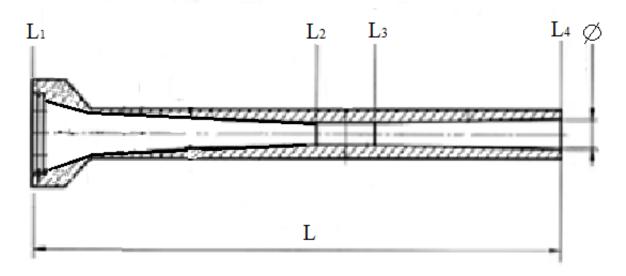


Рисунок 3.3 – Геометрические параметры сопла устройства пожаротушения

Для проведения экспериментальных испытаний (исследований) по определению оптимальных параметров разработанного устройства пожаротушения разработаны рабочие чертежи и изготовлен экспериментальный образец установки пожаротушения.

Экспериментальный образец установки включает бак объемом 11 дм³ для хранения воды, баллон со сжатым до давления 20 МПа воздухом, газовый редуктор давления, устройство пожаротушения, ложемент, шланг подачи воды, шланг подачи воздуха. Внешний вид экспериментального образца установки представлен на Рисунке 3.4.

1 – бак для хранения воды; 2 – баллон со сжатым воздухом; 3 – газовый редуктор давления; 4 – устройство пожаротушения; 5 – ложемент; 6 – шланг подачи воды; 7 – шланг подачи воздуха.

Рисунок 3.4 – Экспериментальный образец установки

Подготовка экспериментального образца установки к работе заключается в заправке баллона со сжатым до давления 20 МПа воздухом (далее — баллон), креплении баллона к устройству пожаротушения и соединении газового редуктора давления, заправке бака через верхнюю заливную горловину водой объемом 11 дм³. Перед непосредственным применением открывают вентиль газового баллона и контролируют по манометру выходное давление газового редуктора давления, равное 1 МПа. Давление от газового редуктора подается в полость наддува в верхней части бака и на газовый вход ствола. Таким образом, на вход устройства пожаротушения подается вода через шланг подачи воды под давлением 1 МПа и сжатый воздух под давлением 1 МПа через шланг подачи воздуха.

Пуск экспериментального образца установки в работу осуществляется путем нажатия на курок устройства пожаротушения. Одновременно открывается клапан

подачи воды и клапан подачи сжатого воздуха. При взаимодействии струй жидкости и сжатого воздуха внутри устройства пожаротушения происходит каплеобразование, разгон, дробление и выброс с высокой скоростью тонкораспыленного двухфазного газокапельного потока в направлении очага пожара.

В процессе изготовления корпуса бака проводились его гидравлические испытания в испытательной лаборатории сектора сертификации, испытаний и экспертизы НИИГД «Респиратор» МЧС ДНР.

По разработанным рабочим чертежам в условиях опытноэкспериментального производства НИИГД «Респиратор» МЧС ДНР произведены изготовление и наладка экспериментального образца установки для подачи его на испытания.

- 3.3 Проведение экспериментальных исследований устройства пожаротушения
- 3.3.1 Проведение экспериментальных исследований на дальность газокапельного потока

Цель испытаний: оценка эффективности газокапельного потока, определение дальности газокапельного потока из изготовленных сопел устройства пожаротушения.

Испытания проводили на испытательной площадке НИИ «Респиратор» МЧС ДНР. Перпендикулярно центральной оси линии дорожки длиной 20 м., проведены линии на расстоянии 5 м друг от друга. В момент испытаний скорость ветра не превышала 3 м/с.

Оператор направлял устройство пожаротушения с соплом длиной L, м. на высоте 1,5 м от асфальтированной поверхности, под углом 30°, производил подачу газокапельного потока. После окончания цикла испытания, проводили замеры расстояния границ потока. При этом, для получения более точных данных по

дальности газокапельного потока, экспериментальные испытания проводились по 25 опытов для сопел разных размерностей.

Затем ЭО установки приводили в состояние к использованию: дозаправка бака водой, замена израсходованного воздушного баллона на полный (не менее 16 МПа), проводили замену сопла другого размера.

Результаты проведенных экспериментальные испытаний на дальность подачи газокапельного потока устройства пожаротушения представлены в таблице 3.1.

Таблица 3.1 – Результаты проведенных экспериментальные испытаний на дальность подачи газокапельного потока

Количество	Длина сопла, см / Максимальная дальность капельного потока, м						
опытов	15	20	25	30			
1	3	3	4	5			
1.	14,2	17,0	18,0	17,5			
2.	14,2	17,2	17,8	17,8			
3.	13,9	16,9	17,9	17,9			
4.	13,7	16,7	18,1	17,5			
5.	14,3	17,3	17,9	17,9			
6.	14,1	17,1	17,5	17,5			
7.	14,1	17,1	18,1	17,4			
8.	14,2	17,0	18,0	17,5			
9.	13,8	17,2	17,6	17,6			
10.	13,9	16,9	17,4	17,4			
11.	13,8	16,7	17,9	17,9			
12.	14,1	17,3	18,3	17,5			
13.	14,1	17,1	17,9	17,9			

Продолжение таблицы 3.1

1	2	3	4	5
14.	14,1	17,1	18,0	17,6
15.	14,2	17,0	17,8	17,8
16.	13,8	17,2	17,9	17,9
17.	14,2	16,9	18,0	17,5
18.	14,2	16,7	18,1	17,7
19.	13,9	17,3	18,2	17,5
20.	13,7	17,1	18	17,4
21.	14,2	17,1	17,9	17,9
22.	14,2	17,2	18,0	17,5
23.	13,8	17,0	17,8	17,8
24.	14,2	17,2	18,0	17,5
25.	14,4	16,9	18,2	17,7

После проведенных экспериментальных испытаний были рассчитаны показателя среднего значения дальности газокапельного потока, которые представлены в таблице 3.2.

Таблица 3.2. Обобщенные результаты проведенных испытаний на дальность подачи газокапельного потока.

No	Длина	Показатель	Норма по техническим	Соответствие по
No	сопла,	среднего значения	требованиям	T3 11616036-2019
Π/Π	L, см	дальности, м	ТЗ 11616036-2019, м, не	
			менее	
1.	15	14,1	16	не соответствует
2.	20	17,0	16	соответствует
3.	25	17,9	16	соответствует
4.	30	17,6	16	соответствует

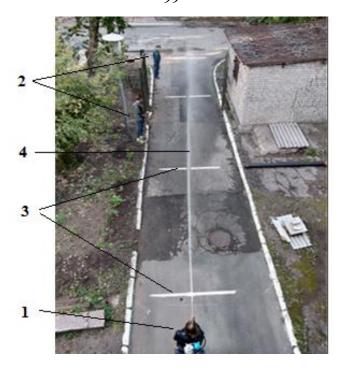

После проведенных экспериментальных испытаний были рассчитаны показателя среднего значения дальности газокапельного потока, которые представлены в таблице 3.3.

Таблица 3.3 – Обобщенные результаты проведенных испытаний (исследований) на дальность подачи газокапельного потока.

№	Длина	Показатель	Норма по техническим	Соответствие по
π/	сопла,	среднего значения	требованиям	T3 11616036-2019
П	L, см	дальности, м	ТЗ 11616036-2019, м	
1.	15	14,1	не менее 16	не соответствует
2.	20	17,0	не менее 16	соответствует
3.	25	17,9	не менее 16	соответствует
4.	30	17,6	не менее 16	соответствует

По результатам проведенных исследований установлено, что наибольшая дальность по крайние капли газокапельного потока составила 17,9 м соплом длиной 25 см.

На Рисунке 3.5 показан процесс проведения экспериментальных испытаний (исследований) экспериментального образца установки на дальность подачи газокапельного потока (вид сверху).

1 – оператор с экспериментальным образцом установки; 2 – наблюдатели; 3 – разметка, 4
 – газокапельный поток.

Рисунок 3.5 – Процесс проведения экспериментальных испытаний (исследований) на дальность

Газокапельный поток представляет собой узконаправленную тонкую струю, массовый расход и импульс которой сконцентрирован вдоль оси струи, что позволяет подавлять пожар на большом расстоянии в случае его недоступности или высокой температуры.

Проведенные экспериментальные исследования показали, что дальность подачи газокапельного потока с соплом 20, 25 и 30 см. удовлетворяет техническим требованиям. Однако сопла с длиной 25, и 30 см. имеют большую массу и габаритные размеры, в отличие от сопла длиной 20 см. Поэтому в качестве рабочего варианта принято сопло длиной 20 см. Обработка результатов измерений длины подачи газокапельного потока проводилась путем нахождения среднеарифметического. Это объясняется тем, при большом ЧТО опытов (n=25) на основании центральной предельной теоремы теории вероятности среднее арифметическое случайной величины (дальности подачи жидкости) стремится к неслучайной величине – математическому ожиданию.

3.3.2 Проведение экспериментальных исследований на определение диаметра капель воды

Цель испытаний: определение диаметра капель воды истекающих из изготовленных сопел устройства пожаротушения.

Испытания проводили на испытательной площадке НИИГД «Респиратор» МЧС ДНР.

В высокоскоростных устройствах пожаротушения диаметр капли определяют на расстоянии 1 м от среза сопла [108]. В нашем случае из-за высокой компактности газокапельной струи на начальном участке длиной 1 м не удалось получить осаждения капель на подложку. В связи с этим отбор капель проводился на расстоянии 3, 6 и 10 м от среза сопла. Осаждение капель осуществлялось на тонкую оптически прозрачную поверхность толщиной не более 1 мм. Для увеличения угла смачивания капли поверхность осаждения натирали парафином, а затем полировали до оптической прозрачности. В результате этого капли сохраняли сферическую форму и не растекались по поверхности плоскости осаждения. Для оптической контрастности пожаротушащее вещество подкрашивали раствором бриллиантовой зелени из расчета 30 мл бриллиантовой зелени на 11 л воды. Оптически прозрачную пластину с подкрашенными каплями переворачивали на 180° и устанавливали на опоры. Капли жидкости удерживались на пластине силами поверхностного натяжения из-за малой массы. Таким образом, получили чистую поверхность, на которую установили объектив измерительной лупы ЛИ-3-10^x с ценой деления 100 мкм. Диаметр капель измеряли путем совмещения делений шкалы c диаметром капель. Результаты ЛУПЫ экспериментального определения диаметра капель с разных сопел представлен в таблице 3.4.

Таблица 3.4 – Результаты экспериментальных испытаний (исследований) определения диаметра капель

No॒	Размерность	Расстояние	Диаметр	%	Средний	Согласно	Соответствие
п/п	сопла L, см	фиксирования	капли,	отношение к	диаметр	требованиям	[109]
		результатов от	MKM	осажденным	капли,	норм [109],	
		среза сопла		каплям	МКМ	мкм, не более	
1	2	3	4	5	6	7	8
1	15	3	300	50	250	150	не соответств.
			200	40			
			100	10			
		6	300	40	230	150	не соответств.
			200	50			
			100	10			
		10	300	60	270	150	не соответств.
			200	40			
			100	0			
2	20	3	300	10	170	150	не соответств.
			200	70			
			100	20			
		6	300	10	150	150	соответств.
			200	70			
			100	20			
		10	300	5	145	150	соответств.
			200	70			
			100	25			
3	25	3	300	20	210	150	не соответств.
			200	70			
			100	10			
		6	300	10	190	150	не соответств.
			200	80			
			100	10			
		10	300	25	200	150	не соответств.
			200	70			
			100	5			
4	30	3	300	40	240	150	не соответств.
			200	60			
			100	0			
		6	300	50	250	150	не соответств.

Продолжение таблицы 3.4

1	2	3	4	5	6	7	8
			200	50			
			100	0			
		10	300	50	250	150	не соответств.
			200	50			
			100	0			

Проведенные экспериментальные исследования показали, что среднеарифметический диаметр капель истекающих из сопла длиной 20 см. составляет около 150 мкм, который соответствует определению понятия «тонкораспыленная вода», данному в [109]. Среднеарифметический диаметр капель, истекающих из сопел длиной 15, 20 и 30 см. не соответствует требованиям.

Известно, что в настоящее время отсутствует физически обоснованное определение тонкораспыленной воды [110]. В разных странах существуют национальные нормативные документы, регламентирующие наибольший диаметр тонкораспыленной воды. Так, в США в стандарте NFPA750 [111] предлагается считать распыл тонким, если 99 % объема жидкости распылено в каплях размером менее 1000 мкм. Кроме того, выделяют три класса дисперсности:

- класс 1: d < 200 мкм,
- класс 2: 200 < d < 400 мкм,
- класс 3: 400 < d < 1000 мкм.

Эксперименты установили, что максимальный показатель по дальности газокапельного потока показал из устройства пожаротушения с соплом длиной равным 20 см. Действительное значение дальности подачи составило 17 м, при котором диаметр капли составил 150 мкм, что удовлетворяет техническим требованиям.

Акт проведения испытаний ЭО установки представлен в приложении В.

3.3.3 Проведение экспериментальных исследований на определение реактивной силы отдачи устройства пожаротушения

Цель: определение реактивной силы отдачи устройства пожаротушения действующая на оператора при подаче газокапельного потока.

Методика проведения: испытания проводили на испытательной площадке НИИГД «Респиратор» МЧС ДНР. Для проведения испытаний был изготовлен стенд, включающий в себя вертикальный штатив, на котором было закреплен динамометр с устройством пожаротушения. Оператор, по команде подавал газокапельный поток. Производилась фиксация силы отдачи устройства пожаротушения по прибору (табл. 3.5).

Таблица 3.5 – Результаты показателей реактивной силы отдачи устройства пожаротушения

No॒	Длина сопла,	Установленное	Норма, Н, не	Соответствие
п/п	L,м	значение силы, Н	более	
1.	15	25	150	Соответствует
2.	20	25	150	Соответствует
3.	25	26	150	Соответствует
4.	30	25	150	Соответствует

Результаты исследования показали, что при установке на устройство пожаротушения сопел разных размерностей равным 15, 20, 25, 30 см реактивная сила отдачи показала допустимые значения.

Экспериментальные исследования по определению реактивной силы отдачи устройства пожаротушения показывают удовлетворительную сходимость результатов теоретических и экспериментальных исследований, максимальная погрешность которых не превышает 12,0%.

В результате проведения экспериментальных испытаний по определению дальности газокапельного потока, диаметра капли, а также реактивной силы отдачи устройства пожаротушения установлено, что наиболее эффективным будет использование устройства пожаротушения с использованием сопла длиной равным 20 см, в свою очередь сопла размерностей 15, 25 и 30 см не соответствуют техническим требованиям.

3.3.4 Проведение экспериментальных исследований по определению скорости газокапельного потока

Цель испытаний: определение скорости газокапельного потока истекающего из сопла устройства пожаротушения.

Испытания проводили на испытательной площадке НИИГД «Респиратор» МЧС ДНР. Скорость ветра на превышала 3 м/с. Для проведения испытаний использовалась высокоскоростная видеокамера Sony Alpha ILCE-6300 с частотой до 120 кадров в секунду.

На вертикальной стенке на расстоянии 1 м. от земли была проведена горизонтальная прямая диной 20 м. с разбивкой 0,5 м. Скорость подачи определяется как частное от деления расстояния в 1 м., пройденного жидкостью, на время, за которое это расстояние пройдено.

Срез сопла устройство пожаротушения размещался вначале горизонтальной прямой на расстоянии 0,2 м, при этом использовалось сопло длиной 20 см. Оператором из устройства пожаротушения подавался газокапельный поток в количестве 25 опытов.

Истечение газокапельного потока из устройства пожаротушения фиксировалось высокоскоростной видеокамерой видеооператором. После, проводилась раскадровка отснятого материала.

В результате экспериментально установлена скорость газокапельного потока, истекающая из сопла устройства пожаротушения представлена в таблице 3.6.

Таблица 3.6 – Результаты определения скорости газокапельного потока

№ опыта	Расстояние от устройства пожаротушения, м. / Скорость, м/с						
	0,5	3	6	10	15	17	
1.	47,1	35,5	21,5	9,7	1,2	0,6	
2.	46,7	35,7	22	9,6	1,4	0,5	
3.	47,0	36	21,4	9,3	1,6	0,6	
4.	47,5	35,7	21,3	9,8	1,7	0,4	
5.	46,8	35,9	21,4	9,3	1,1	0,2	
6.	47,0	35,5	21,6	9,7	1,2	0,7	
7.	47,3	35,7	21,4	9,6	1,4	0,5	
8.	47,5	35,9	21,5	9,5	1,5	0,6	
9.	47,4	35,5	21,4	9,6	1,4	0,4	
10.	47,1	35,7	21,7	9,6	1,4	0,5	
11.	47,5	35,6	21,6	9,3	1,6	0,5	
12.	46,8	35,6	21,4	9,7	1,2	0,6	
13.	47,0	35,6	21,6	9,6	1,7	0,4	
14.	47,3	35,7	21,4	9,6	1,6	0,4	
15.	47,5	35,9	21,5	9,3	1,7	0,5	
16.	47,1	35,5	21,4	9,8	1,1	0,5	
17.	46,7	35,7	21,7	9,7	1,2	0,5	
18.	47,0	35,6	21,7	9,6	1,7	0,6	
19.	47,3	35,7	21,6	9,6	1,6	0,4	
20.	47,5	35,9	21,4	9,6	1,6	0,5	
21.	47,4	35,5	21,6	9,3	1,7	0,5	
22.	47,1	35,5	21,4	9,8	1,1	0,6	
23.	47,5	35,7	21,7	9,7	1,2	0,4	
24.	47,0	35,6	21,7	9,6	1,7	0,4	
25.	47,1	35,7	21,6	9,3	1,6	0,6	
Средний показатель скорости, м/с	47,2	35,7	21,5	9,6	1,4	0,5	

Исходя из проведенных теоретических исследований (раздел 2) установлено, что для тушения пожара класса 3A диаметр капель должен быть не более 180 мкм, а скорость – не менее 4,8 м/с, соответственно эффективное тушение пожара соплом длиной 20 см устройства пожаротушения будет на расстоянии около 9-12 м (Рисунок 3.6).

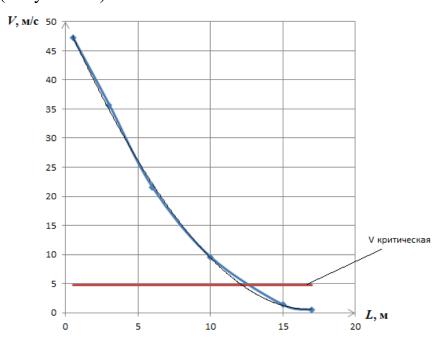


Рисунок 3.6 – График изменения скорости газокапельного потока от расстояния.

Аппроксимация эмпирических данных моделирующей их аналитической функцией с помощью пакета программ «Статистика» позволила получить следующее выражение:

$$V = 0.015L^3 + 0.1236L^2 - 5.4632L + 50.175$$
(3.1)

при коэффициенте детерминации $R^2=0,994,$ что соответствует индексу корреляции $R=\sqrt{R^2}$. При $R^2=0,994$ получаем R=0,9997. Таким образом:

• фактор «дальность подачи газокапельного потока» объясняет до 99,4 % всех возможных факторов, действующих на скорость газокапельного потока;

• теснота выбранного согласно выражению (3.1) типа связи между фактором «дальность подачи газокапельного потока» и исследуемой переменной (скоростью газокапельного потока) равна 99,97 % [112].

Экспериментальные исследования по определению скорости газокапельного потока на срезе сопла устройства пожаротушения показывают удовлетворительную сходимость результатов теоретических и экспериментальных исследований, максимальная погрешность которых не превышает 12,7%.

Выводы к разделу 3

- 1. На основании исследований разработано и изготовлено устройство пожаротушения с газодинамическим принципом распыления жидкости.
- 2. Предложена конструкция сопла устройства пожаротушения, содержащая три участка:
- 1-й: смешивание, в котором происходит выравнивание газокапельного потока;
- 2-й: инжектирование, в котором происходит ускорение газокапельных потоков;
- 3-й: сопло, в которое подается эжектированный поток газоводяной смеси, что приводит к высокому уровню параллельности, направленной на очаг возгорания с достаточной плотностью огнетушащих веществ.
- 3. Установлено соответствие конструктивных решений разработанного устройства пожаротушения с его узлами и элементами, а также подтверждена эффективность устройства пожаротушения при подаче огнетушащих веществ.
- 4. Экспериментально установлено, что наиболее приемлемо для целей пожаротушения сопло устройства длиной равным 20 см, при котором дальность газокапельного потока составила 17 м при среднем диаметре капли не более 150 мкм.

- 5. Экспериментально установлено, что наиболее эффективное тушение пожара соплом 20 см. устройства пожаротушения будет на расстоянии около 9-12 м.
- 6. Для определения эргономических показателей воздействия используемого устройства пожаротушения на оператора проведены испытания, которые показатели, что сила отдачи на плечо оператора составляет не более 25 H.
- 7. Экспериментальные исследования по определению реактивной отдачи и скорости газокапельного потока на срезе сопла устройства пожаротушения показывают удовлетворительную сходимость результатов теоретических и экспериментальных исследований, максимальная погрешность которых не превышает 12,7%.
- 8. При проведении экспериментальных исследований устройства пожаротушения отказов в работе не выявлено, а конструктивное исполнение обеспечило безопасную эксплуатацию.

РАЗДЕЛ 4

ОБОСНОВАНИЕ ПАРАМЕТРОВ И РАЗРАБОТКА РАНЦЕВОЙ УСТАНОВКИ ДЛЯ ТУШЕНИЯ ЛОКАЛЬНЫХ ОЧАГОВ ПОЖАРА ТОНКОРАСПЫЛЕННОЙ ВОДОЙ

4.1 Конструктивные параметры и эксплуатационные характеристики разработанного устройства пожаротушения и опытного образца ранцевой установки тушения локальных очагов пожара тонкораспыленной водой.

По результатам проведенных экспериментальных исследований, разработаны технические требования к следующим условиям: формировании конструктивного исполнения установки пожаротушения, условиям эксплуатации, конструкторской документации, сырью, материалам и покупным комплектующим изделиям [113].

Разработка рабочих чертежей установки пожаротушения осуществлялась путем автоматизированного компьютерного объемного моделирования. Изготовление установки пожаротушения проводили на опытно-экспериментальном производстве НИИГД «Респиратор» МЧС ДНР.

При разработке опытного образца устройства пожаротушения учитывалось условие эргономичности. Устройство пожаротушения снабжено рукояткой для его удержания одной рукой. Распылительная втулка (Рисунок 4.1) представляет собой цилиндрический стакан, на боковой поверхности которого равномерно (через $(90\pm5)^\circ$ друг от друга) распределены 36 отверстий (по девять в ряд) диаметром $(1,0\pm0,1)$ мм для подвода воды, а в донышке выполнены три отверстия диаметром $(1,0\pm0,1)$ мм, расположенные на окружности под углом $(120\pm5)^\circ$ для подвода воздуха.

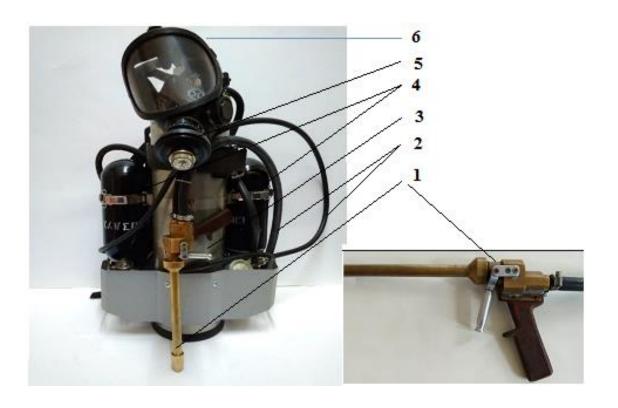
где 1 – отверстия для подвода воды; 2 – отверстия для подачи воздуха

Рисунок 4.1 – Распылительная втулка

Рычаг устройства пожаротушения при его нажатии обеспечивает одновременное открытие клапана подачи воды и клапана подачи воздуха. Внутренняя поверхность сопла имеет вид профилированного сужающегосярасширяющегося канала.

С целью обеспечения безопасности оператора, повышения времени его работы в не пригодной для дыхания среде в конструктивное исполнение установки пожаротушения дополнительно добавлен дыхательный аппарат [113], схема которого разработана на основе методики трехмерного моделирования деталей и узлов в системе автоматизированного проектирования. В качестве лицевой части дыхательного аппарата используется панорамная маска.

Воздуховодные шланги, служащие для обвязки сосуда для воды, воздушного баллона и ствола укомплектованы шлангами с рабочим давлением 2,5 МПа. Оба конца шланга оснащены соединительными элементами, выполненными из шестигранника ЛС59 диаметром 19 мм [114].


Огнетушащее вещество объемом 10,0 л хранится и транспортируется в баллоне для жидкости, выполненном из нержавеющей стали

Установка изготовлена в климатическом исполнении У категории 5 по ГОСТ [115], но предназначена для работы при температуре окружающей среды от 275 К (плюс 2 °C) до 323 К (плюс 50 °C) и относительной влажности до 95 % при температуре 308 К (плюс 35 °C).

Установка стойка к воздействию транспортной тряски во время транспортирования при скорости до 50 км/ч [116]. Внешнее покрытие установки атмосферостойкое в соответствии с 1.1 ГОСТ [117] и 1.3, 1.6 ГОСТ [118].

Подача воздуха в бак для воды осуществляется в верхней его части. Отбор воды из бака для воды осуществляется из нижней его части.

На изложенные факторы, с учетом возможных вариантов эргономичности и удобства для оператора изготовлен опытный образец ранцевой установки для тушения локальных очагов пожара с устройством газодинамического принципа распыления жидкости (далее – ОО установки) (Рисунок 4.2).

1 – устройство газодинамического принципа распыления жидкости;
 2 – шланги для подачи воздуха и воды;
 3 – емкость для воды;
 4 – баллоны с воздухом;
 5 – легочный автомат;
 6 – панорамная маска.

Рисунок 4.2 – Общий вид опытного образца ранцевой установки для тушения локальных очагов пожара с устройством газодинамического принципа распыления жидкости

- 4.2 Экспериментальная оценка эффективности опытного образца ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой с устройством пожаротушения
- 4.2.1 Предварительные испытания опытного образца ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой

Предварительные испытания опытного образца ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой проводились в НИИГД «Респиратор».

Климатические условия во время проведения предварительных испытаний опытного образца установки:

- температура окружающего воздуха 23...24 °C,
- относительная влажность воздуха 60...80 %,
- атмосферное давление 97...100 кПа.

В результате испытаний установлено:

- опытный образец установки, представленный на предварительные испытания, изготовлен согласно конструкторской документации и разработанной в соответствии с требованиями технического задания (Приложение A),
 - соответствует требованиям к конструкторской документации.

При проведении испытаний установлено следующее:

- масса опытного образца установки (без воды) составила 19,5 кг, что соответствует требованиям технического задания,
- габаритные размеры опытного образца установки соответствуют требованиям рабочих чертежей (390 \times 340 \times 665),
- дальность подачи воды составила 17,0 м, что соответствует требованиям технического задания,
- длительность подачи воды составила 29 с, что отвечает требованиям технического задания,
- срабатывание предохранительного клапана произошло при давлении
 1,2 МПа, что соответствует требованиям технического задания.

Проверку опытного образца установки (без воды) на воздействие транспортной тряски проводили на стенде имитации транспортной тряски СИТ, в режиме, соответствующем транспортированию по дороге с грунтовым покрытием или разбитым асфальтовым покрытием с отдельными выбоинами до 30 см со скоростью до 50 км/ч на частоте 6,5 Гц (с максимальной перегрузкой 22) в течение 30 мин. Проверке подвергались бак для воды и устройство пожаротушения. После имитации транспортирования не произошло разрушения элементов конструкции опытного образца установки, что соответствует требованиям технического задания.

Проведенные испытания подтвердили соответствие основных показателей назначения опытного образца установки требованиям технического задания и конструкторской документации.

4.2.2 Огневые испытания опытного образца ранцевой установки по ликвидации модельного очага пожара

Огневые испытания проводились на полигоне НИИГД «Респиратор», по тушению модельного очага пожара класса А.

Климатические условия во время проведения испытаний опытного образца установки пожаротушения:

- температура окружающего воздуха 20...22 °C,
- относительная влажность воздуха 60...80 %,
- атмосферное давление 97...100 кПа.

Модельный очаг пожара представлял собой деревянный штабель в виде куба. Штабель размещался на твердой опоре (на двух стальных уголках по ГОСТ [119]) таким образом, в результате чего расстояние от основания штабеля до опорной поверхности составляло (400±10) мм. Количество деревянных брусков в штабеле -18 шт.; длина бруска – 200 мм; число брусков в слое - 3 шт. В качестве горючего материала использовались бруски хвойных пород не ниже третьего сорта по ГОСТ [120] сечением (40±1) мм и длиной. Влажность пиломатериала составляла от 10 до 20 % [121].

Штабель выкладывался таким образом, что бруски каждого последующего слоя были перпендикулярны к брускам нижележащего слоя. При этом по всему объему были образованы каналы прямоугольного сечения.

С учетом проведенных экспериментальных исследований, для проведения огневых испытаний применялось разработанное устройство пожаротушения с соплом 20 см. По команде руководителя испытаний поджигался модельный очаг пожара. По истечении 7 минут (время наступления устойчивого горения штабеля) оператор приступал к тушению. При этом оператор находился от модельного очага в радиусе на расстояниях 3, 6 и 9 м. Для правильности действий оператора при прекращении горения водяной поток подавался дискретно-непрерывно. Время ликвидации модельного очага пожара фиксировалось. Результаты испытаний представлены в таблице 4.1.

Таблица 4.1 – Результаты испытаний ликвидации горения модельного очага пожара.

Расстояние к месту	Время	Результат		
горения, м	ликвидации			
	горения, с			
3	20	Горение прекращено		
6	37	Горение прекращено		
9	49	Горение прекращено		

В результате установлено что модельный очаг пожара класса 1А успешно потушен опытным образцом установки с разработанным устройством пожаротушения с соплом длиной 20 см.

Проведение испытания по тушению модельного очага пожара класса 1А показано на Рисунке 4.3.

где а – Горение модельного очага пожара класса 1A, б - Тушение модельного очага пожара класса 1A.

Рисунок 4.3 – Процесс проведения огневых испытаний

Акт приёмочных испытаний опытного образца установки приведен в приложении Б.

При проведении экспериментальных исследований опытного образца установки отказов в работе не выявлено, а конструктивное исполнение обеспечило безопасное обслуживание и эксплуатацию.

В результате проведенных экспериментальных исследований установлено:

- опытный образец установки выполнена в соответствии с техническими
 требованиями к конструкции установки, комплектом рабочих чертежей,
- экспериментальные исследования подтвердили работоспособность опытного образца установки с использованием дыхательного аппарата,
- разработанный опытный образец установка обеспечит защиту оператора
 при тушении пожаров в не пригодной для дыхания среде.

По результатам проведенных экспериментальных испытаний и замеров установлены основные тактико-технические характеристики опытного образца установки, которые приведены в таблице 4.2.

Таблица 4.2 – Тактико-технические характеристики опытного образца установки

№ п/п	Наименование показателя	Значение показателя
1.	Дальность подачи воды, м, не менее	17
2.	Объем воды или воды с добавками, дм ³ , не менее	10,0
3.	Запас воздуха, дм ³ , не менее	2 × 400
4.	Расход воды, дм ³ /с, не менее	0,35
5.	Расход воздуха, подаваемый на ствол, кг/с, не более	0,013
6.	Длительность подачи воды, с, не менее	28
7.	Габаритные размеры	390×340×665
8.	Масса (без воды), кг, не более	19,5

4.2.3 Проведение испытаний опытного образца установки для тушения локальных очагов пожара тонкораспыленной водой

Эффективность опытного образца установки была подтверждена в результате применения ее в ликвидации происшедших пожаров на территории Донецкой Народной Республики.

Так, в период 01.09.2021 по 01.10.2021 благодаря применению установки пожаротушения пожарно-спасательными подразделениями МЧС ДНР было успешно ликвидировано 2 пожара. Акт проведения опытных испытаний опытного образца ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой представлен в приложении В.

Сведения о практическом применении установки пожаротушения приведены в таблице 4.3.

Таблица 4.3 – Сведения о практическом применении установки пожаротушения

No	Адрес пожара	Что горело	Дата	Время	Время	Период	Спасено,
п/п				подачи	локализа	наступле	руб.
				ОТВ,	ции,	ния	
				час.мин.	час.мин.	локализа	
						ции с	
						момента	
						подачи	
						OTB,	
						мин	
1.	г. Донецк, п-т	Детская	02.09.21	00.35	00.36	1	3000
	Комсомольск	площадка					
	ий, д. 31						
2.	г. Донецк, ул.	автомобиль	21.09.21	20.47	20.49	2	60000
	Коммунаров,	Москвич-2141					
	д. 12е	гос.№					
		В237СН					

Рассматриваемая установка пожаротушения с разработанным устройством прошла опытные испытания и показали эффективность применения при ликвидации пожаров в Донецкой Народной Республики. Так, при анализе оперативно-тактических действий по тушению пожаров установлено, что подача огнетушащего вещества с установки пожаротушения осуществлялась в 2 раза быстрее, чем при подачи водяного ствола от пожарной автоцистерны. Тем самым, проводился процесс локализации распространения огня в минимально-кратчайшие сроки, что подтверждает эффективность установки для целей пожаротушения. Кроме того, установлено что запас огнетушащего вещества в установке позволяет не только локализовать пожар, но и в отдельных случаях его ликвидировать.

Поэтому, чем раньше будет осуществляться подача огнетушащих веществ в зону горения, тем быстрее будет проведена ликвидация пожара и в конечном итоге будет меньше материальный ущерб, спасены человеческие жизни. Следовательно,

чем будет меньше время сосредоточения сил и средств, необходимых для прекращения горения, тем быстрее уменьшится скорость роста площади пожара.

Анализ происшедших пожаров показывает, что особенно сложно вести замкнутых помещениях, имеющих ограниченные пожарами в пожаротушения, возможности ДЛЯ подачи средств типа подвальных полуподвальных помещений, шахт, тоннелей и т.п. [122]. Примеров пожаров на подобных объектах множество, так, например, 27 августа 2000 года примерно в 14 ч 30 мин на высоте 450 метров в результате короткого замыкания произошло фидеров кабелей) горение (высоковольтных передающей аппаратуры Останкинской телебашни в г. Москве. Из-за конструктивных особенностей телебашни, а также имеющегося высокого электрического напряжения в электроподающих коммуникациях и оборудовании, не было возможным подавать огнетушащие составы на первоначальной стадии его развития. В результате чего, пожар продолжал распространяться. К тушению пожара приступили только в 16 ч 00 мин 27 августа 2000 г В результате совместных действий по тушению пожара, его удалось ликвидировать лишь к 06 ч 00 мин 29 августа 2000 г, фактически через двое суток после его возникновения, погибли трое граждан, многие спасатели получили термические поражения; конструкции телебашни получили повреждения [123].

Рассматривая вопрос тушения пожаров на различных объектах, уместно говорить о применении установки пожаротушения при ликвидации горения на начальной стадии развития в помещениях с ограниченным пространством на «специфичных» объектах: такие как, например, морские суда и подводные лодки. Объясняется это тем, что применение сплошных водяных струй с большим расходом воды может привести к катастрофичным последствиям, вплоть до их затопления. При применении установки пожаротушения газокапельный поток выбрасывается под большим давлением, в результате чего огонь может быть сбит с очага горения с расстояния до 10 м., и соответственно прекращено горение.

Кроме того, для использования установок пожаротушения, не требуется специальной подготовки оператора. Наиболее эффективно использовать эти

установки для подавления пламени на начальной стадии его возникновения непосредственно сотрудниками пожарных команд, добровольных пожарных дружин, охраной или дежурными, на объектах, в промышленности, в офисах организаций, в медицинских и оздоровительных учреждениях (клиниках, санаториях, пансионатах, турбазах) в сфере отдыха и досуга (в гостиницах, ресторанах, спортивных и выставочных комплексах). За счет оперативной и своевременной подачи огнетушащих веществ на тушение пожара на ранней стадии горения позволит значительно сократить время ликвидации пожара.

При наличии установки пожаротушения в боевом расчете пожарноспасательных автомобилей оперативно-спасательной службы МЧС ДНР повышало бы их тактические возможности по тушению пожаров, в том числе пожаров, где затруднено или даже невозможно подать огнетушащие вещества на высоту более 75 метров.

В результате проведения научно-исследовательской работы, учитывая, что в настоящее время существует ограниченное материально-техническое снабжения подразделений МЧС ДНР, а также высокой стоимости комплектующих элементов и дефицит их поставок в Республику, предложено конструктивное исполнение установки пожаротушения с разработанным устройством, которое будет наиболее экономичным в изготовлении, что, в целом, имеет большое значение для экономики Республики.

4.3 Разработка предложений по внедрению установки пожаротушения

За счет своих небольших размеров, установка пожаротушения может вывозиться на пожарно-спасательных автомобилях, находящихся в подразделениях МЧС ДНР. Предложен способ размещения установки пожаротушения на пожарной автоцистерне, который представлен на Рисунке 4.4.

1 – пожарный автомобиль; 2 – установка пожаротушения.

Рисунок 4.4 – Иллюстрация способа размещения установки пожаротушения на пожарном автомобиле

Беря во внимание, что в Донецкой Народной Республике дислоцируется 17 Государственных пожарно-спасательных отрядов МЧС ДНР и 4 Государственных военизированных горноспасательных отрядов МЧС ДНР, с целью улучшения оперативно-тактических действий территориальных органов МЧС ДНР предлагается обеспечить минимальным количеством установок пожаротушения из расчета одна установка в структурное подразделение МЧС ДНР.

Кроме того, для субъектов хозяйствования возможно применение установки пожаротушения в упрощенном конструктивном варианте — без использования дыхательного аппарата и панорамной маски. Что будет удешевлять изготовление самой установки пожаротушения.

Исследовав вопрос применения ручных огнетушителей для тушения пожаров, можно сделать вывод, что по сравнению с разработанной установкой пожаротушения, огнетушители менее эффективно позволяют ликвидировать горение. Так, в настоящее время наиболее распространенными огнетушителями являются порошковые и углекислотные, способные тушить некоторые классы пожаров A, B, C [124]. Однако, ввиду своих характеристик, они не являются

безопасными: порошковые и углекислотные огнетушители создают экологические и токсикологические проблемы для окружающей среды [125], также при использовании углекислотных огнетушителей возможно получить термическое поражение кожных покровов человека. В свою очередь, при применении разработанного устройства пожаротушения эти недостатки будут исключены.

Кроме того, при использовании огнетушителей по назначению, необходимо максимально близко приблизится к месту пожара, расстояние которое составляет не более 1-5 м, что не всегда это может быть возможным [126]. Ограниченный запас огнетушащего вещества не обеспечивает тушение пожара площадью более 6 м². Кроме того, ежегодные расходы на содержание огнетушителей достаточно большие: сюда входит освидетельствование и испытание баллона, замена дорогостоящего огнетушащего состава (порошка). В свою очередь можно констатировать, что установка пожаротушения с разработанным устройством по своим тактико-техническим характеристикам превосходит огнетушители и может качественнее использоваться для борьбы с огнем.

Поэтому очевидно, что внедрение разработанной установки пожаротушения в субъекты хозяйствования даст эффективный результат в случае ее применения при возникновении пожара и как следствие, снижение вероятности гибели людей и материального ущерба от пожара.

4.4 Обоснование эффективности промышленного внедрения результатов исследований

Обеспечение пожарной безопасности в государстве – есть основа экономического прогресса [127]. Пожарная охрана призвана защищать от огня всё достояние общества в виде материальных благ и природных ресурсов, а также обеспечивать безопасность людей в ситуациях, связанных с пожарами. Изучение вопросов, связанных с оценкой ущерба от пожаров, влияние экономических последствий от пожаров исследовались многими учеными, такими как Ю.И. Аболенцев, В.А. Акимов, П. Вагнер, Н.Н. Брушлинский, С.В. Соколов [128].

Исследование экономической составляющей противопожарной защиты, в экономическом анализе выступают как условие и как результат функционирования объекта. противопожарной защиты Поэтому реализованные мероприятия противопожарной защиты, определяя ее состояние, структуру, назначение и результат функционирования, служат источником появления совокупности отражающих технико-экономических показателей, содержание изучаемого объекта [129].

В Донецкой Народной Республике не разработана методика, которая позволяет определить общий ущерб от пожара, в том числе всех составляющих связанных с обеспечением пожарной безопасности и последствий от пожаров.

Важнейшим показателем сравнительной эффективности противопожарной защиты является экономический эффект. Он определяется разностью приведенных затрат и отражает экономию ресурсов вложений, которая может быть обеспечена в народнохозяйственном масштабе при реализации выбранного путем сравнительного анализа варианта.

Для определения экономической эффективности от внедрения технических средств пожаротушения, прежде всего необходимо учитывать характер деятельности субъекта хозяйствования, на котором будут внедряться новые технические разработки.

В данном случае рассматриваем разработанную ранцевую установку пожаротушения для тушения локальных очагов пожара.

Установка пожаротушения может использоваться по предназначению сотрудниками оперативно-спасательных служб, в том числе подразделениями Государственной пожарной охраны МЧС ДНР и Государственной военизированной горноспасательной службы МЧС ДНР, членами добровольных пожарных дружин, другими формированиями, которые участвуют в ликвидации пожара.

Для расчета экономической эффективности необходимо учитывать статистические данные Донецкой Народной Республики.

За 12 месяцев 2021 года оперативная обстановка с пожарами в Донецкой Народной Республике по сравнению с аналогичным периодом прошлого года характеризовалась следующими основными показателями:

- зарегистрировано 4994 пожаров и загораний (2020 г. 13441; -62,8%);
- на пожарах погибло 176 человек (2020 г. 180; -2,2%), детей 1, (2020 г. 2; -50,0%);
 - получили травмы 156 человек (в 2020 г. 185; -15,6%);
- материальный ущерб от пожаров составил 120 млн. 023 тыс. рублей (2020г. 199 млн. 338 тыс. руб.; -39,7%).

Огнем было уничтожено и повреждено 1189 зданий и сооружений различного назначения, 96 единиц транспортных средств, 11 т. грубых кормов.

Показатель количества пожаров на 10 тыс. населения по Республике составил 22,5. Данные по пожарам в ДНР приведены за период 2017-2021гг приведены в таблице 4.4.

Таблица 4.4 – Статистические показатели обстановки с пожарами в ДНР за 5 лет (2017-2021гг.)

N п/п	Показатели	2017г.	2018г.	2019г.	2020г.	2021
1.	Количество пожаров	8553	6920	6357	13441	4994
2.	Ущерб, млн. руб.	162,6	188,1	122,8	199,4	120,1
3.	Погибло людей	118	150	151	181	176
4.	в т.ч. детей	0	3	6	2	1
5.	Травмировано, чел	151	180	175	185	156
6.	Уничтожено, повреждено зданий, сооружений (ед.)	2088	1645	1720	2244	1189
9.	Уничтожено, повреждено техники (ед.)	104	149	115	129	96

Продолжение таблицы 4.4

10.	Уничтожено кормов, т	310	33	274	27	11
11.	Количество пожаров (загораний) в населенном пункте городского типа	7136	6016	5497	11835	4527
12.	Количество пожаров (загораний) в сельском населенном пункте	565	364	340	636	196
13.	Вне территории населенного пункта	852	540	519	970	267
14.	Пожары на 10 тыс. населения	37,1	30,1	28,1	59,4	22,5

Большая часть пожаров и загораний, а именно 90,6% приходится на города и поселки городского типа, где возникло 4527 пожаров и загораний. В сельской местности ДНР зарегистрировано 196 пожаров и загораний, что на 69,2% меньше, чем в 2020 году 636.

В государственном и частном жилом секторе в 2021 году зарегистрировано 2512 пожаров и загораний, что на 43,7% меньше, чем за аналогичный период прошлого года (2020г. - 4465), на которых погибло 169 человека (в 2020 году – 164 чел.). Статистика пожаров и загораний по жилому сектору приведена в таблице 4.5.

Таблица 4.5 – Статистика пожаров и загораний по жилому сектору за 5 лет (2017-2021г.г.)

Показатели	2017г.	2018г.	2019г.	2020г.	2021г.
Пожары	4229	3079	2875	4465	2512
Погибло	109	136	144	164	169

Средний показатель по пожарам за 5 лет в жилом секторе составил 3432 ед. [130].

Исходя из статистических данных определим годовой экономической эффект от применения установки пожаротушения при ликвидации пожаров. Для расчета используем экономико-математическую модель ущерба от наиболее часто возникающих видов пожара, в частности, пожаров, возникающих в жилом фонде, в расчете на один пожар [131]:

$$V = a + b \cdot t, \tag{4.1}$$

где V — ущерб от пожара, руб.;

t — длительность ликвидации пожара, ч;

a и b — эмпирические коэффициенты.

Для среднего числа пожаров в год, n=3432 и средней длительности ликвидации пожара t=0.5 ч. получены следующие значения коэффициентов:

$$a = 13,83 \cdot 10^6$$
 py6.

$$b = 2,03 \cdot 10^6$$
 руб/ч.

Используя формулу 4.1, имеем:

$$V = 15,86 \cdot 10^6$$
 руб

Исходя, что из анализа происшедших пожаров, возможно применение разработанной установки пожаротушения для ликвидации каждого 10 пожара, происходивших в жилом секторе.

Поэтому для этих условий имеем: n=343 год, t=0.25 час, тогда

$$a^{\parallel} = 1.08 \cdot 10^6 \text{ py6.}, \quad b^{\parallel} = 0.6 \cdot 10^6 \text{ py6/4},$$

а зависимость (1) принимает вид:

$$V^{\dagger} = a^{\dagger} + b^{\dagger} \cdot t^{\dagger} = 1,08 \cdot 10^{6} + 0,6 \cdot 10^{6} \cdot 0,4 = 1,32 \cdot 10^{6}, \tag{4.2}$$

Стоимость установки пожаротушения, с учетом затрат на разработку конструкторской документации, затрат на изготовление элементов и узлов, затрат на проведение опытных испытаний рассчитываем по:

$$£_{\text{общ}} = \varepsilon_{\text{разр}} + \varepsilon_{\text{узл}} + \varepsilon_{\text{исп}},$$
(4.5)

где $\varepsilon_{\text{разр}}$ – затраты на разработки конструкторской документации;

 $\varepsilon_{\text{V3Л}}$ – затраты на изготовление элементов и узлов;

 $\varepsilon_{\rm исп}$ – затраты на проведение опытных испытаний.

$$\pounds_{\text{оби }} = 4.0 \cdot 10^3 + 79.04 \cdot 10^3 + 2.0 \cdot 10^3 = 85.04 \cdot 10^3$$
, руб.

Годовой экономический эффект рассчитываем по:

$$\Im_{\Gamma} = \Delta V^{\dagger} - \pounds_{\text{обш}},\tag{4.6}$$

Тогда из формулы (4.6) имеем:

$$\Im_1 = 1,32 \cdot 10^6 - 85,04 \cdot 10^3 = 1234960$$
 руб.

Полученный расчет показывает достаточный экономический эффект от внедрения в подразделения оперативно-спасательных служб ДНР установки пожаротушения с разработанным устройством, тем самым значительно позволит повысить процент ликвидируемых пожаров на начальной стадии развития, снизить материальный ущерб и спасти человеческие жизни.

Одним из приоритетных направлений МЧС ДНР является повышения готовности аварийно-спасательных и пожарно-спасательных подразделений. Внедрение разработанной установки пожаротушения в оперативно-спасательные службы, а также на объекты хозяйствования, позволит значительно сократить время ликвидации пожара, при их возникновении, тем самым уменьшить социальный и экономический ущерб от пожаров.

Выводы к разделу 4

- 1. С учетом ограниченности в материально-техническом снабжении подразделений МЧС ДНР, а также высокой стоимости комплектующих элементов и дефицита их поставок в Республику, предложено конструктивное исполнение установки пожаротушения с разработанным устройством, которое будет наиболее экономичным в изготовлении, что в целом является большим значением для экономики Донецкой Народной Республики.
- 2. В результате проведенных огневых испытаний оценена эффективность разработанного устройства пожаротушения при тушении модельного очага пожара класса 1A, что соответствует НПБ 316-2003.
- 3. С помощью разработанного опытного образца установки было ликвидировано 2 локальных пожара и подтверждена эффективность разработанного устройства пожаротушения.
- 4. Установлено соответствие конструктивных решений разработанного устройства пожаротушения, с ее узлами и элементами, а также подтверждена эффективность установки пожаротушения при ликвидации горения.
- Сформированы предложения ПО внедрению установки способ размещения Рекомендуется пожаротушения. созданного средства пожаротушения на пожарных автоцистернах пожарно-спасательных подразделений МЧС ДНР.
- 6. Ожидаемый экономическая эффективность от внедрения результатов работы составляет 1,234 млн.руб.

ЗАКЛЮЧЕНИЕ

Диссертация является завершенной научно-квалификационной работой, в которой на основании установленных закономерностей внутрикамерных газодинамических процессов дано решение актуальной научно-технической задачи по обоснованию параметров устройств с газодинамическим принципом распыления жидкости и для повышения эффективности тушения очагов пожара в начальной стадии.

Основные выводы, научные и практические результаты выполненной диссертационной работы заключаются в следующем:

- 1. Анализ происшедших пожаров показал, что при применении устройств с газодинамическим принципом распыления жидкости возможно оперативно подать огнетушащие вещества и эффективно ликвидировать локальные очаги пожара в начальной стадии развития, тем самым уменьшить социальный и материальный ущерб.
- 2. Разработана математическая модель динамических процессов в стволе устройств импульсного пожаротушения с дискретным принципом распыления жидкости, полученные на основе уравнений энергетического баланса. Математическая модель учитывает влияние потерь на ускорение пожаротушащей жидкости и местное сопротивление при переходе от ствола к насадке, а также устанавливает взаимосвязь конструктивных и газодинамических параметров для научного обоснования технических требований при проектировании устройства, получения расчетных параметров для сравнения с аналогичными устройствами пожаротушения.
- 3. Впервые разработана математическая модель физических процессов в сопле устройства с газодинамическим принципом распыления жидкости, включающая дифференциальные, алгебраические уравнения и предложенную алгебраическую функцию давления с плавным изменением его по длине сопла, позволяющая определить геометрический профиль сопла. Это позволяет расчетным путем установить рациональные геометрические показатели профиля сопла ствола.

- 4. Проведены экспериментальные исследования, результаты которых позволили *установить* скорость и максимальное расстояние газокапельного потока истекающего из разработанного устройства, а также диаметр капли. В процессе экспериментальных исследований произведена оценка уровня безопасности оператора, управляющего работой устройства.
- 5. **Разработан** опытный образец ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой с использованием устройства на основе газодинамического принципа распыления жидкости.
- 6. В результате огневых испытаний экспериментально *подтверждена* эффективность разработанного устройства пожаротушения при тушении модельного очага пожара класса 1A.
- 7. Ожидаемый годовой экономический эффект от внедрения ранцевой установки с использованием устройства с газодинамическим принципом распыления жидкости составит около 1,235 млн. руб.
- 8. *Разработаны* и утверждены МЧС ДНР методические рекомендации по применению ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой.

СПИСОК ЛИТЕРАТУРЫ

- 1. Center for Fire Statistics. World Fire Statistics. №27 2022. URL: https://ctif.org (дата обращения 09.06.2022).
- 2. Пожарная техника: Учебник / Под ред. М.Д. Безбородько. М.: Академия ГПС МЧС России, 2004. 550 с.
- 3. Богданов, М. И. Справочник по пожарной технике и тактике: учеб. пособие. / М.И. Богданов, Г.Ф. Архипов, Е.И. Мястенков Управление государственной противопожарной службы Санкт-Петербурга и Ленинградской области МЧС России, г. Санкт-Петербург, 2002. 120 с.
- 4. Принятие решений руководителем тушения пожара: учеб.-метод. пособие по выполнению контрольной работы по дисциплине «Управление силами и средствами пожарных подразделений при тушении пожара» / С. В. Гундар, А. Н. Григорьев, М. М. Данилов, А. Н. Денисов, В. Б. Захаревский, К. С. Власов. М.: Академия ГПС МЧС России, 2017. 69 с.
- 5. Теребнев, В.В. Пожарная тактика. Книга 9. Пожаротушение в зданиях. Екатеринбург: ООО «Издательство «Калан», 2013, 168 с.
- 6. Теребнев В.В. Пожарно-техническое вооружение. Устройство и применение. / В.В. Теребнев, Н.И. Ульянов, В.А. Грачев М.: Центр Пропаганды, 2007. 328 с., илл.
- 7. Клименти, Н. Ю. Пожарная тактика. Особенности ведения тактических действий по тушению пожаров на различных объектах / Учебное пособие / Н.Ю. Клименти, О.С. Власова М-во образования и науки Рос. Федерации, Волгогр. гос. архит.-строит. ун-т., 2015г 314 с.
- 8. Клименти, Н. Ю. Пожарная тактика: курс лекций: в 2 ч. Ч. 2 / Н. Ю. Клименти. Волгоград.: ВолгГАСУ. 2014 106 с.

- 9. Тимофеева, С.С. Физико-химические основы развития и тушения пожаров / С.С. Тимофеева, Т.И. Дроздова, Г.В. Плотникова, В.Ф. Гольчевский Иркутск, 2013 174 с.
- 10. Преснов, А.И. Пожарные автомобили: Учебник водителя пожарного автомобиля. / А.И. Преснов, А.Я. Каменцев Санкт-Петербург, 2006. 507 с.
- 11. Теребнев, В.В. Пожаротушение в жилых и общественных зданиях. Серия «Пожаротушение». Книга 1. АГПС МЧС России. / В.В. Теребнев, Н.С. Артемьев, А.В. Подгрушный Екатеринбург: «Издательство Калан», 2008.
- 12. Степанов, К.Н. Справочник. Пожарная техника. / К.Н. Степанов, Я.С. Повзик, И.В. Рыбкин М.: ЗАО «Спецтехника», 2003. 400 с.
- 13. Кошмаров, Ю.А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие / Ю.А. Кошмаров, С.В. Пузач, В.В. Андреев М.: Академия ГПС МВД России, 2012. 126 с.
- Денисов, А.Н. Тактические приемы аварийной разведки и спасения при тушении пожаров. Учебно-методическое пособие. / А.Н. Денисов, М.М. Данилов,
 О.И. Степанов, Е.Е. Зайцева М.: Академия ГПС МЧС России, 2020.
- 15. Теребнев, В. В. Пожарная тактика. Понятие о тушении пожара. Часть 1. Екатеринбург: ООО «Издательство «Калан», 2010. 356с.
- 16. Теребнев, В.В. Управление тушением пожара. Учебное пособие М.: издательство, 2006. 284 с.
- 17. Теребнев, В.В., Смирнов В.А., Семенов А.О. Пожаротушение. Справочник. / В.В. Теребнев, В.А. Смирнов, А.О. Семенов— Екатеринбург: ООО «Издательство «Калан», 2009. 410 с.
- 18. Боевой устав пожарно-спасательных подразделений Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики, утвержденный приказом МЧС ДНР от 29.07.2019 № 250.

- 19. Установки пожаротушения тонкораспыленной водой УПТВ URL: http://npo-prostor.ru/wadata/public/site/pdf/UPTV_for_site.pdf (дата обращения 01.02.2019).
- 20. Дауэнгауэр, С.А. Пожаротушение тонкораспыленной водой: механизмы, особенности, перспективы / С.А. Дауэнгауэр // Пожаровзрывобезопасность. 2004. N_2 6. С. 78 81.
- 21. Методические рекомендации по тушению пожаров в зданиях повышенной этажности и высотных зданиях, утвержденные приказом МЧС Донецкой Народной Республики от 05.02.2018г. №45.
- 22. Андросенко, С.Г. Организация ведения оперативно-тактических действий при тушении пожаров в общественных зданиях: учеб.-метод. пособие. / С. Г. Андросенко, А. Н. Денисов М.: Академия ГПС МЧС России, 2013. 28 с.
- 23. Титков, В.Й. Из истории развития средств пожаротушения // Пожаровзрывобезопасность. 1993. № 2. С. 51 56.
- 24. Буланов, И. М. Технология ракетных и аэрокосмических конструкций из композиционных материалов / И.М. Буланов, В.В. Воробей. Москва: Изд-во МГТУ им. Н.Э. Баумана, 1998. 516 с.
- 25. Пашковский, П.С. Механизм первичного каплеобразования в камере смешения пожаротушащего устройства / П.С Пашковский, Пефтибай Г.И., Галухин Н.А., Болдырев М.Н. // Научный вестник НИИГД «Респиратор»: науч.техн. журн. Донецк, 2018. № 4(55). 126 с. С. 25 36.
- 26. Янкевич, Н. С. Газодисперсные технологии на службе в МЧС / Н.С. Янкевич, Ю.И. Шавель // Чрезвычайные ситуации: предупреждение и ликвидация: М., 2012. № 1 (31). С. 91-98.
- 27. Андрюшкин, А.Ю. Получение тонкораспыленной воды газодинамическим распылением / А.Ю. Андрюшкин, М.Т. Пелех // Вестник Санкт-Петербургского университета государственной противопожарной службы МЧС России. -2012.- N

 otag 1.-C. 53-58.

- 28. Егоров, А.В. Гидравлические параметры импульсного водомёта // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». Донецк, 1999. С. 62 69.
- 29. Дмитриченко, А.С. Рекомендации по тушению пожаров с использованием УИП-1 / А.С. Дмитриченко, А.Г. Иваницкий; Команд.-инженер. ин-т МЧС Респ. Беларусь. Минск, 2010. 12 с.
- 30. Руководство по повышению эффективности действий подразделений пожарной охраны при ликвидации пожаров на начальных этапах развития в зданиях с использованием информации от мониторинговых систем поддержки управления. Семенов А.О., Тараканов Д.В., Баканов М.О., Гринченко Б.Б., Захаров Д.Ю. Иваново: Ивановская пожарно-спасательная академия ГПС МЧС России, 2017.
- 31. Бухтояров, Д.В., Установки импульсного пожаротушения / Д.В. Бухтояров, С.Н. Копылов Пожарная безопасность. 2005. № 3.
- 32. Переносные устройства пожаротушения с высокоскоростной подачей огнетушащего вещества. URL: http://www.securitytech.ru/publication/fire_safety/rypts (дата обращения 19.01.2020).
- 33. Абрамов, Ю.А. Моделирование процессов в пожарных стволах / Ю.А.
 Абрамов, В.Е. Росоха, Е.А. Шаповалова. Харьков: Фолио, 2001.
 195 с.
- 34. Семко, А.Н. Тушение газовых факелов высокоскоростными импульсными струями жидкости / А.Н. Семко, М.В. Бескровная, С.А. Виноградов, И.Н. Грицына // Горноспасательное дело: сб. науч. тр. НИИГД «Респиратор». Донецк, 2013. Вып. 50. С. 128 136.
- 35. Семко, А.Н. Импульсные струи жидкости высокой скорости и их применение: монография / А.Н. Семко Донецк: ДонНУ, 2014. 370 с.
- 36. Росоха, С.В. Экспериментальное определение скорости капельного потока огнетушащей жидкости, необходимой для тушения газового факела /

- С.В. Росоха, И.Н. Грицына, С.А. Виноградов // Проблемы пожарной безопасности: сб. науч. тр. / НУГЗ. Харьков, 2011. Вып. 30. С. 205 208.
- 37. Пефтибай, Г.И. Стеклопластиковая ёмкость для ранцевой установки пожаротушения / Г.И. Пефтибай, Н.А. Галухин, М.А. Белокобыльский, В.Л. Ефименко / Вестник Академии гражданской защиты №3(19). Донецк, 2019. С. 95 101.
- 38. Андрюшкин, А.Ю. Формирование дисперсных систем сверхзвуковым газодинамическим распылением / А.Ю. Андрюшкин. СПб.: Балт. гос. техн. ун-т, 2012. 400 с.
- 39. Рыженков, Ю.Ф. Некоторые проблемы использования тонкораспыленной воды в установках пожаротушения: Материалы XVI науч.-практич. конфер. // ВНИИПО М.: 2001. URL: http://www. fireman.ru/bd/sd/melk-voda2.htm (дата обращения 19.01.2020).
- 40. Мамаев, В.В. Определение реактивной силы двухфазной истекающей из сосуда под давлением струи / В.В. Мамаев, В.В. Гуржий, Р.Я. Лозинский // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». Донецк, 2003. С. 33 36.
- 41. Капустин, А.В. Судебно-медицинская экспертиза. М., 1999 №1.
 С. 18 20.
- 42. Семко, А.Н. Перспективы применения импульсных струй жидкости для тушения газовых факелов / А.Н. Семко, М.В. Бескровная, Ю.Д. Украинский и др. // Вісник НТУ ХПІ. 2013. \mathbb{N} 5 (979). С. 225 232.
- 43. Ефименко, В.Л. Повышение социально-экономических результатов тушения пожара водой / ВЛ. Ефименко, Д.О. Гуренко / Пожарная и техносферная безопасность: проблемы и пути совершенствования: научный журнал. Вып. 3(7). Донецк: 596 с. С.158—162.

- 44. Ранцевая установка импульсного пожаротушения. URL: https://vrazno.ru/rantsevaya-ustanovka-impulsnogo-pozharotusheniya. (дата обращения 03.06.2020).
- 45. Устройство пожаротушения ранцевое РУПТ-1-0,4. Руководство по эксплуатации. М.: 2009. 13 с.
- 46. Грицына, И.Н. Математическая модель внутренней баллистики устройства импульсной подачи жидкости для тушения газовых фонтанов в квазистационарной постановке / И.Н. Грицына // Проблемы пожарной безопасности: сб. науч. тр. / НУГЗ. Харьков, 2009. Вып. 25. С. 43 46.
- 47. Богомаз, А.М. Динамические процессы в стволе импульсного устройства пожаротушения / А.М. Богомаз, Г.И. Пефтибай, Н.А. Галухин // Научный вестник НИИГД «Респиратор». 2017. № 3(54). С. 16 25.
- 48. Кострубицкий, А.А. Дальнобойность прерывистых струй жидкости при тушении пожаров / А.А Кострубицкий, В.Г. Агеев // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, Донецк, 2016. № 2 (53). 119 р. С. 7 15.
- 49. Патент №89397 МПК А62С 15/00. Ранцевая установка импульсного пожаротушения / А.Г. Иваницкий, В.В. Самойлов, А.С. Лебедев; Республиканское унитарное производственное предприятие "Витязь" (РУПП "Витязь") № 2008106069/22; заявл. 02.18.2008; опубл. 12.10.2010.
- 50. Установка импульсного пожаротушения ранцевая «Витязь» УИП-1» ТУ РБ 07507162.025-98.
- 51. Корольченко, Д.А. Применение тонкораспыленной воды для тушения пожаров в высотных зданиях / Д.А. Корольченко, Ю.В. Громовой, О.О. Ворогушин // Пожаровзрывобезопасность. −2011. − Т. 20, № 9. − с. 54 − 56.
- 52. Ранцевая установка пожаротушения ИГЛА-1-0,4: назначение и характеристики. URL: https://fireman.club/statyi-polzovateley/rantsevaya-ustanovka-pozharotusheniya-igla-1-0-4 (дата обращения 20.12.2018).

- 53. Установки пожаротушения тонкораспыленной водой УПТВ. URL: http://npo-prostor.ru/wadata/public/site/pdf/UPTV_for_site.pdf (дата обращения 29.01.2019).
- 54. Егоров, А.Н., Атанов Г.А. Определение параметров установки импульсного пожаротушения / А.Н. Егоров, Г.А. Атанов / Горноспасательное дело: сб. науч. тр. / НИИГД. Донецк, 1995. С. 38 45.
- 55. Чохонелидзе, А.Н. Справочник по распыливающим, оросительным и каплеулавливающим устройствам / М.: Энергоатомиздат, 2002. 608 с.
- 56. Ранцевая установка пожаротушения URL: https://fireman.club/statyi-polzovateley/rantsevaya-ustanovka-pozharotusheniya-igla-1-0-4 (дата обращения 29.01.2019).
- 57. Семко, А.Н. Импульсные струи жидкости высокого давления / А.Н. Семко. Донецк: Вебер, 2007. 149 с.
- 58. Импульсная установка Игла. URL: https://carmen62.ru/impulsnaya-ustanovka-pozharotusheniya-igla (дата обращения 29.01.2021).
- 59. Кострубицкий, А.А. Определение параметров прерывистой струи жидкости при её распаде над очагом пожара / А.А Кострубицкий // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2017. № 1 (54). 112 с. С. 7 14.
- 60. Пашковский, П.С. Механизм первичного каплеобразования в камере смешения пожаротушащего устройства / П.С. Пашковский, Пефтибай Г.И., Галухин Н.А., Болдырев М.Н. // Научный вестник НИИГД «Респиратор»: науч.техн. журн. Донецк, 2018. N = 4(55). 126 с. С. 25 36.
- 61. Кутателадзе, С.С. Анализ подобия в теплофизике / С.С. Кутателадзе. Новосибирск: Наука, 1982. 280 с.
- 62. Лахвич, В.В. Эффективность применения импульсного устройства пожаротушения в помещении в зависимости от природы огнетушащего средства. / В.В. Лахвич, В.В. Богданова, А.В. Врублевский URL:

https://cyberleninka.ru/article/n/effektivnost-primeneniya-impulsnogo-ustroystva-pozharotusheniya-v-pomeschenii-v-zavisimosti-ot-prirody-ognetushaschego-sredstva (дата обращения 13.08.2020).

- 63. Пат. 2107554 Российская Федерация, МПК В05В7/00, А01G25/00, А62C31/02. Способ создания газокапельной струи, установка для его осуществления и сопло для создания газокапельной струи / Ю.В. Зуев, А.В. Карпышев, И.А. Лепешинский; заявл. и патентообл. Научно-исследовательский институт низких температур при Московском государственном авиационном институте (техническом университете). − 96113451/25; заявл. 08.07.1996; опубл. 27.03.1998. Бюл. № 9 от 08.07.1996.
- 64. Патент №2121390 МПК А62С 31/02. Установка для пожаротушения / Ю. В. Зуев, А.В. Карпышев., И.А. Лепшинский; Научно-исследовательский институт низких температур при МАИ (Московском государственном авиационном институте техническом университете). № 97107903/12; заявл. 14.05.1997; опубл. 10.11.1998.
- 65. Пат. 24639 Российская Федерация, МПК A62C13/00, B05B7/04. Устройство для пожаротушения / А.В. Карпышев; заявл. и патентообл. ООО «Темперо». — 2002111191/20; заявл. 30.042002; опубл. 20.08.2002. Бюл. № 23 от 20.08.2002.
- 66. Ефименко, В.Л. Применение установок импульсного пожаротушения // Научный журнал «Пожарная и техносферная безопасность: проблемы и пути совершенствования: научный журнал». Вып. 1(2). Донецк: ГОУВПО «Академия гражданской защиты» МЧС ДНР, 2019. 330с. С. 107 109.
- 67. Патент №2316369 МПК А62С 31/02. Устройство пожаротушения / А.Л. Душкин, А.В. Карпышев; А.Л. Душкин, А.В. Карпышев № 2006122074/12; заявл. 22.06.2006; опубл. 10.02.2008.
- 68. Ефименко, В.Л. Устройства импульсного пожаротушения. Актуальность их применения. Анализ патентных и научно-технических

- материалов / Пожарная и техносферная безопасность: проблемы и пути совершенствования: научный журнал. Вып. 3(10). Донецк: ГОУВПО «Академия гражданской защиты» МЧС ДНР, 2021. 542 с.
- 69. Патент №97642 A62C 35/02 Устройство для тушения пожара / В.А. Димов, И.А. Димова, А.В. Полякова № 2010101147/22; заявл. 01.11.2010; опубл. 20.09.2020.
- 70. Патент №2484866 МПК А62С 15/00. Мобильная установка пожаротушения / О.С. Кочетов, М.О. Стареева, М.М. Стареева; О.С. Кочетов, М.О. Стареева, М.М. Стареева № 2012113905/12; заявл. 10.04.2012; опубл. 20.06.2013.
- 71. Патент №176037 МПК А62С 31/02. Устройство для распыления жидкости в газовой среде с образованием двухфазной струи с высокой скоростью и дисперсностью жидкости / А.В. Николашкин, А.В. Яшин № 2015156733; заявл. 28.12.2015; опубл. 26.12.2017.
- 72. Патент №2132752 МПК В05В 7/04. Устройство для создания газокапельной струи и клапан для подачи двухфазной рабочей среды / Э.А. Доркин, И.А. Лепшинский, А.В. Карпышев; Научно-исследовательский институт низких температур при МАИ (Московском государственном авиационном институте техническом университете). № 98106891/25; заявл. 13.04.1998; опубл. 10.07.1999.
- 73. Патент РФ № 2076760, МПК А 62 С 5/00, 35/00. Способ и устройство для пожаротушения / А.М. Кордунский, Ю.С. Чишевский, О.И. Демин, Ю.П. Клочко, С.О. Демин, К.А. Сиротин, С.А. Дюба, Н.Н. Носиков №96118120/12; заявл. 22.08.1996; опубл. 04.101997.
- 74. Патент №2264833 МПК А62С 13/62. Распылитель жидкости и огнетушитель / В.И. Долотказин, А.Л. Душкин, А.В. Карпышев; В.И. Долотказин, А.Л. Душкин, А.В. Карпышев № 2004126285/12; заявл. 02.09.2004; опубл. 27.11.2005.

- 75. Установка импульсного пожаротушения «Витязь» УИП-1: Руководство по эксплуатации. URL: www. vityas.com/data/flame/nip1manual/pdf (дата обращения 16.03.2019).
- 76. Patent US 6425537B1 MΠΚ: A62C 31/00. A fire extinguishing device /Per Finn Nielsen Filed 2000-06-16; Published 2001-07-03.
- 77. Патент №2254155 МПК А62С 15/00. Переносная установка пожаротушения и распылитель жидкости / А.Л. Душкин, А.В. Карпышев, А.Н. Протасов; А.Л. Душкин, А.В. Карпышев, А.Н. Протасов № 2004106710/12; заявл. 10.03.2004; опубл. 20.06.2005.
- 78. Патент №2430789 МПК В05В 1/34. Мобильная установка пожаротушения / О.С. Кочетов, М.О. Стареева; О.С. Кочетов, М.О. Стареева № 2010120465/05; заявл. 21.05.2010; опубл. 21.05.2010.
- 79. Патент №2416441 МПК А62С 13/04. Огнетушитель Кочетова / О.С. Кочетов, М.О. Стареева; О.С. Кочетов, М.О. Стареева № 2010120447/12; заявл. 21.05.2010; опубл. 20.04.2011.
- 80. Патент №2297864 МПК А62С 13/00. Устройство пожаротушения / А.Л. Душкин, А.В. Карпышев; А.Л. Душкин, А.В. Карпышев № 2005124563/12; заявл. 02.08.2005; опубл. 27.04.2007.
- 81. Патент №2490041 МПК А62С 15/00. Переносная установка пожаротушения / А.Л. Душкин, А.В. Карпышев, С.Е. Ловчинский, И.Е. Панкин; Общество с ограниченной ответственностью «ТЕМПЕРО» № 2012110021/12; заявл. 15.03.2012; опубл. 20.08.2013.
- 82. Цой, А.С. Режимы и механизмы подавления пламени распыленной водой: дис. канд. техн. наук: 01.04.14 / А.С. Цой. СПб., 2016. 177 с.
- 83. Mc Caffrey B.J. Purely Buoyant Diffusion flames: Some Experimental Results. Final Report. NBSIR 79-1910. Washington DC: National Bureau of Standards, 1979. 49 p.

- 84. Ольшанський, В.П. Балістика крапель розпилених рідин / В.П. Ольшанський, С.В. Ольшанський, О.М. Ларін та ін. Біла Церква: Вид. Пшонківський, 2006. 124 с.
- 85. Зуев, Ю.В. Моделирование двухфазных струйных течений. Сравнение моделей / Ю.В. Зуев, И.А. Лепешинский, А.В. Ципенко и др. // Аэрозоли: наука, вычислительные программы в России и странах СНГ. − 1996. − № 12. − С. 23.
- 86. Instruction Manual Instructions for Use and Operation IFEX 3000 and IFEX 3035. URL: www.manualslib.com/manual/1185786/Ifex-Technologies-Ifex-3000.html (дата обращения 10.05.2019).
- 87. Богомаз, А.М. Динамические процессы в стволе импульсного устройства пожаротушения / А.М. Богомаз, Г.И. Пефтибай, Н.А. Галухин // Научный вестник НИИГД «Респиратор». 2017. N = 3(54). C. 16 25.
- 88. Дмитриченко, А.С. Численное моделирование движения огнетушащей жидкости в проточной части установки импульсного пожаротушения. URL: http://www.rusnauka.com/46_PWMN_2015/Tecnic/2_204720.doc.htm (дата обращения 10.05.2019).
- 89. Дубінін, Д.П. Тенденції розвитку імпульсних вогнегасних систем для гасіння пожеж дрібнорозпиленим водяним струменем / Д.П. Дубінін, К.В. Коритченко, А.А. Лісняк, Є.М. Криворучко // Проблемы пожарной безопасности. 2019. Вып. 45. С. 41 47.
- 90. Мамаев, В.В. Математическая модель динамических процессов импульсного устройства пожаротушения / В.В. Мамаев, Г.И. Пефтибай, Н.А. Галухин, В.Л. Ефименко // Научный вестник НИИГД «Респиратор»: Донецк, 2020. №3 (57). С. 18 25.
- 91. Агеев, В.Г. Динамика движения жидкости в стволе импульсного пожаротушащего устройства / В.Г. Агеев, Н.А. Галухин, М.Н. Болдырев В.Л. Ефименко // Научный вестник НИИГД «Респиратор»: Донецк, 2021. Nolline 1 (58). С. 7 16.

- 92. Пефтибай, Г.И. Анализ ранцевых устройств пожаротушения тонкораспыленной водой / Г.И. Пефтибай, Н.А. Галухин, В.Л. Ефименко // Вестник Академии гражданской защиты. Донецк, 2019. № 1(17). С. 68-73.
- 93. Иваницкий, А.Г. Гидродинамические характеристики стволов установок импульсного пожаротушения // Вестник Командно-инженерного института МЧС Республики Беларусь, №1 (13), 2011. С. 41 52.
- 94. Пахомов, Г.Б. Новейшая технология пожаротушения тонкораспыленной водой. Характеристики устройств и перспективы развития / Г.Б. Пахомов // Мир и безопасность. -2008. № 3. 24 с.
- 95. Зуев, Ю.В. Моделирование двухфазных струйных течений. Сравнение моделей / Ю.В. Зуев, И.А. Лепешинский, А.В. Ципенко и др. // Аэрозоли: наука, вычислительные программы в России и странах СНГ. − 1996. − № 12. − 23 с.
- 96. Воронецкий, А.В. Экспериментальные и теоретические исследования двухфазных газокапельных течений в соплах и струях с высокой массовой концентрацией жидкости в газе: автореф. дис. канд. техн. наук / А.В. Воронецкий. М., 2000 URL: http://tekhnosfera.com/ eksperimentalnye-i-teoreticheskie-issledovaniya-dvuhfaznyh-gazokapelnyh-techeniy-v-soplah-i-struyah-s-vysokoy-massovoy-ko (дата обращения: 06.02.2019).
- 97. Барилович, В.А. Основы термогазодинамических двухфазных потоков и их численное решение / В.А. Барилович. СПб. : Изд-во Политехн. ун-та, 2009. 425 с.
- 98. Пашковский, П.С. Газодинамические процессы в разгонном сопле пожаротушащего устройства / П.С. Пашковский, Г.И. Пефтибай, Н.А. Галухин / Научный вестник НИИГД «Респиратор». 2018. № 2(55). С. 53 66.
- 99. Ципенко, А.В. Теория и методы повышения эффективности противопожарных систем на воздушном транспорте: дис. ... д-р техн. наук : 05.26.02 / А.В. Ципенко / М., 2006. 354 с.

- 100. Истомин, Е.А. Авиационный ГТД в системе пожаротушения большой мощности и дальности действия : автореф. дис. ... канд. техн. наук : 05.07.05 / Истомин Евгений Андреевич. М., 2012. 26 с.
- 101. Энциклопедия машиностроения URL: https://mash-xxl.info/page/09612211617323900007608506618209521208 3242141013 (дата обращения 27.07.2021).
- 102. Ефименко, В.Л. Обоснование геометрических параметров сопла пожаротушащей установки / В.Л. Ефименко // Вестник Академии гражданской защиты. Донецк, 2022. № 2(30). С. 12 17.
- 103. Кострубицкий, А.А. Влияние избыточного давления на выходе из сопла на дисперсность капель жидкости / А.А Кострубицкий // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, Донецк, 2016. № 3 (53). 120с. С. 7 13.
- 104. Цариченко, С.Г. Некоторые вопросы пожаротушения тонкораспыленной водой / С.Г. Цариченко // Пожарная автоматика 2008: каталог. М.: РИА «Индустрия безопасности», 2008. C. 1 5.
- 105. Кострубицкий, А.А. Моделирование испарения капель жидкости в зоне действия пожара / А.А Кострубицкий, В.Г. Агеев // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, Донецк, 2016. № 4 (54). 114 с. С. 7 15.
- 106. Пашковский, П.С. Взаимодействие капельного и теплового потоков на границе пламени пожара / П.С. Пашковский, Г.И. Пефтибай, Н.А. Галухин, В.Л. Ефименко // Научный вестник НИИГД «Респиратор»: Донецк, 2019. N_{2} (56). С. 19-27.
- 107. Ефименко, В.Л. Прогноз процессов, происходящих в сопле устройств пожаротушения с газодинамическим принципом распыления жидкости / В.Л. Ефименко // Современные проблемы гражданской защиты: научный журнал

- Ивановская пожарно-спасательная академия ГПС МЧС России: Россия, г. Иваново, 2022. N g 3 (44). C. 50 54.
- 108. Грицына, И.Н. Расчет длины сплошного участка ультраструй / И.Н. Грицына, С.А. Виноградов // Проблемы пожарной безопасности: сб. науч. тр. / НУГЗ. Харьков, 2011. Вып. 29. С. 46 49.
- 109. НПБ 316-2003 Переносные и передвижные устройства пожаротушения с высокоскоростной подачей огнетушащего вещества. Требования пожарной безопасности. Методы испытаний / ФГУ ВНИИПО МЧС России. М., 2003. $50 \, \mathrm{c}$.
- 110. Рыженков, Ю.Ф., Некоторые проблемы использования тонкораспыленной воды в установках пожаротушения: Материалы XVI науч.-практич.конфер. // ВНИИПО М.: 2001. URL: http://www. fireman.ru/bd/sd/melk-voda2.htm (дата обращения 02.06.2019).
- 111. NFPA750: Standart on vater mist fire protection systems. National fire protection association, Boston MA, USA, 2006.
- 112. Ефименко, В.Л. Экспериментальные исследования устройства пожаротушения с газодинамическим принципом распыления жидкости / В.Л. Ефименко // Научный вестник НИИ «Респиратор»: Донецк, 2022. N2 (59). С. 36 47.
- 113. ГОСТ Р 15.301-2016 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство. М.: Стандартинформ, 2018. 12 с.
- 114. Гудков, С.В. Изолирующие дыхательные аппараты и основы их проектирования / С.В. Гудков, С.И. Дворецкий, С.Б. Путин, В.П. Тавров. Москва : Машиностроение, 2008. С.86.
- 115. ГОСТ 10362–2017 Рукава резиновые напорные с нитяным усилением без концевой арматуры. Технические условия. М.: Стандартинформ, 2017. 23 с.

- 116. ГОСТ 15150-69 Машины, приборы и другие технические изделия исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 85 с.
- 117. ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения. М. 1975. 14 с.
- 118. ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования.
 - 119. ГОСТ 8510-86 Уголки стальные горячекатаные неравнополочные.
 - 120. ГОСТ 8486-86 Пиломатериалы хвойных пород. Технические условия.
- 121. ГОСТ 16588-91 Пилопродукция и деревянные детали. Методы определения влажности.
- 122. Кострубицкий, А.А. Динамика импульсных струй жидкости при дистанционном тушении пожара / А.А. Кострубицкий, В.Г. Агеев // Научный вестник НИИГД «Респиратор». 2016. № 1(53). С. 7 15.
- 123. Пожар в останкинской башне. Как это было 20 лет назад. URL: https://www.m24.ru/articles/proisshestviya/27082020/157029?utm_source=CopyBuf (дата обращения 20.10.2019).
- 124. ГОСТ Р 51057-2001 Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний.
- 125. Liu, Z. / A study of portable water mist fire extinguishers used for extinguishment of multiple fire types // Fire Safety Journal 2007.
- 126. Теребнев, В.В. Справочник руководителя тушения пожаров / В.В. Теребнев М: Пожкнига, 2004. 248с.
- 127. Федеральный закон от 21.12.1994 № 69-ФЗ «О пожарной безопасности» (с изменениями). Принят Государственной Думой РФ 18.11.1994.

- 128. Загуменнова, М.В. Научно-методические подходы к определению предотвращенного ущерба / М.В. Загуменнова, А.Г. Фирсов, В.И. Сибирко, А.А. Порошин // Актуальные проблемы пожарной безопасности: материалы XXXI Международной науч. практ. конф. М.: ВНИИПО, 2019. С. 436 439.
- 129. Предупреждение и ликвидация чрезвычайных ситуаций: методы, технологии, проблемы и перспективы: сб. материалов II Междунар. заочной науч.-Светлая Роща, 28.06.2018 практ. конф., Γ. Γ. Светлая Роща: Филиал ИППК, 2018. 200c. URL: http://repositsc.nuczu.edu.ua/bitstream/123456789/7227/1/%D0%A1%D0%B1%D0%B E%D1%80%D0%BD%D0%B8%D0%BA%20%202018-split-merge.pdf. (дата обращения 16.03.2019).
- 130. Основные итоги деятельности Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики за 2021 год. Донецк, 2022. С. 146.
- 131. Моисеева, Е.Е. Экономическая эффективность противопожарных мероприятий / Е.Е. Моисеева, Д.В. Южаков // Актуальные проблемы лесного комплекса. 2009. № 23. С. 311 314.

Министерство по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики (МЧС ДНР)

ГОСУДАРСТВЕННЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГОРНОСПАСАТЕЛЬНОГО ДЕЛА, ПОЖАРНОЙ БЕЗОПАСНОСТИ И ГРАЖДАНСКОЙ ЗАЩИТЫ «РЕСПИРАТОР» (НИИГД «РЕСПИРАТОР»)

УТВЕРЖДАЮ

Министр по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий ДНР

генерап-лейтенант сдужбы гражданской

защиты

А. Кострубицкий

2019 г.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на

РАНЦЕВУЮ УСТАНОВКУ ДЛЯ ТУШЕНИЯ ЛОКАЛЬНЫХ ОЧАГОВ ПОЖАРА ТОНКОРАСПЫЛЕННОЙ ВОДОЙ (УСТРОЙСТВО ИМПУЛЬСНОГО ТУШЕНИЯ ПОЖАРОВ) ТЗ 11616036-2019

СОГЛАСОВАНО
Директор Департамента
пожарно-спасательных сил и
специальных формирований МЧС ДНР
полковник службы гражданской защиты

Д.В. Мотов

В.Г. Агеев

«03»
2019 г.

Донецк 2019

12.2 Местонахождение ТЗ:

- 1-й экземпляр МЧС ДНР;
- 2-й экземпляр НИИГД «РЕСПИРАТОР».

Начальник НИОСМАС

личная подпись, дата

Г.И. Пефтибай

Научный руководитель работы, науч. сотр. HИОСМАС

Жогд личная подпись, дата

Н.А. Галухин

Ответственные исполнители: науч. сотр. НИОСЗД

личная подпись, дата

Р.С. Плетенецкий

инженер I категории НИОСМАС

личная подпись, дата

Н.Г. Зинченко

ассистент кафедры надзорной деятельности и правового обеспечения факультета «Пожарной безопасности» ГОУВПО «Академии гражданской защиты» МЧС ДНР

личная подпись, дата

В.Л. Ефименко

Начальник СКБ

личная подпись, дата

В.Ф. Паращевин

Заведующий сектором сертификации, испытаний и экспертизы

личная подпись, дата

А.Н. Жильцов

МЧС ДНР

ГОСУДАРСТВЕННЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГОРНОСПАСАТЕЛЬНОГО ДЕЛА, ПОЖАРНОЙ БЕЗОПАСНОСТИ И ГРАЖДАНСКОЙ ЗАЩИТЫ «РЕСПИРАТОР» МИНИСТЕРСТВА ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ (НИИГД «РЕСПИРАТОР»)

УТВЕРЖДАЮ

Министр по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Понецкой Народной Республики

Донецкой Народной Республики, генерал тейтенант службы гражданской защиты

_____A.A. Кострубицкий арта 2020 г.

AKT

приёмочных испытаний опытного образца ранцевой установки для тушения локальных очагов пожара тонкораспылённой водой (устройство импульсного тушения пожаров) (работа № 11616036)

г. Донецк

16.03.2020

Комиссия в составе:

председатель комиссии Мерка А.Л.

начальник отдела организации реагирования, готовности подразделений Департамента пожарно-спасательных сил и специальных формирований МЧС ДНР, подполковник службы гражданской защиты,

заместитель председателя Мамаев В.В.

— заместитель директора (по научной работе) НИИГД «Респиратор»,

- 2.3 Анализ результатов проведенных приёмочных испытаний показал, что ОО установки выполнен в соответствии с конструкторской документацией и требованиями ТЗ.
- 2.4 Комплектность конструкторской документации обеспечивает возможность единичного производства устройства.
 - 2.5 Считать согласованным руководство по эксплуатации УТПВ.00.000 РЭ.
 - 2.6 Конструкторской документации присвоить литеру "И".

Председатель комиссии

Зам. председателя

Члены комиссии:

А.Л. Мерка

В.В. Мамаев

И.А. Татаров

Г.И. Пефтибай

Н.А. Галухин

Н.Г. Зинченко

Р.С. Плетенецкий

А.Н. Жильцов

В.Ф. Паращевин

С.В. Олейников

А.В. Еремин

В.Л. Ефименко

УТВЕРЖДАЮ

Начальник ГБУ «Пожарно-спасательный отряд г. Донецк МЧС ДНР»

полковник службы гражданской защиты

В.Н. Зайцев

2022г

проведения испытаний ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой (работа № 11616036)

30 06 2022 г.

г. Донецк

Комиссия в составе: начальника 1 пожарно-спасательной части ГБУ «ПСО г. Донецк МЧС ДНР» полковника службы гражданской защиты Вегнера А.В., помощника начальника дежурной смены службы пожаротушения и проведения аварийно-спасательных работ Центра управления в кризисных ситуациях МЧС ДНР майора службы гражданской защиты Кирьяна А.А., заместителя начальника 1 пожарно-спасательной части ГБУ «ПСО г. Донецк МЧС ДНР» старшего лейтенанта службы гражданской защиты Алдобаева А.Н. подтверждает проведение опытных испытаний ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой. Установка пожаротушения изготовлена в НИИГД «Респиратор» МЧС ДНР, при исследований результаты использованы разработке которой диссертационной работе Ефименко В.Л.

В период 01.09.2021г. по 01.10.2021г. установка пожаротушения находилась в боевом расчете 1 пожарно-спасательной части ГПСО г. Донецк МЧС ДНР и применялась для ликвидации двух локальных очагов пожаров.

Сведения о практическом применении установки пожаротушения приведены в таблице.

№ п/ п	Адрес пожара	Что горело	Дата	Время подачи воды, час. мин.	Время ликвидации, час. мин.
1.	г. Донецк, п-т Комсомольский, д. 31	Детская площадка	02.09.2021	00.35	00.36
2.	г. Донецк, ул. Коммунаров, д. 12е	автомобиль Москвич-2141 гос.№ В237СН	21.09.2021	20.47	20.49

Рассматриваемая установка пожаротушения с устройством газодинамического принципа распыления жидкости прошла испытания и показала эффективность применения при ликвидации локальных очагов пожара. При проведении испытаний установки пожаротушения отказов в работе не выявлено, а конструктивное исполнение обеспечивает безопасное обслуживание и эксплуатацию.

Начальник 1 ПСЧ ГБУ «ПСО г. Донецк МЧС ДНР» полковник службы гражданской защиты

y

А.В. Вегнер

Помощник начальника дежурной смены службы пожаротушения и проведения аварийно-спасательных работ Центра управления в кризисных ситуациях МЧС ДНР майор службы гражданской защиты

А.А. Кирьян

Заместитель начальника 1 ПСЧ ГБУ «ПСО г. Донецк МЧС ДНР» старший лейтенант службы гражданской защиты

А.Н. Алдобаев

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«АКАДЕМИЯ ГРАЖДАНСКОЙ ЗАЩИТЫ МИНИСТЕРСТВА ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ» (ГБОУ ВО «АГЗ МЧС ДНР»)

ул. Розы Люксембург, 34 А, г. Донецк, 83050 тел./факс (062) 332 17 12 Web: agz.dnmchs.ru Идентификационный код 51019475 E-mail: agz@mail.dnmchs.ru

AKT

о внедрении результатов исследований диссертационной работы Ефименко Виталия Леонидовича на тему «Повышение эффективности устройств пожаротушения с газодинамическим принципом распыления жидкости», представленную на соискание ученой степени кандидата технических наук по специальности 05.26.03 «Пожарная и промышленная безопасность»

Настоящим актом подтверждается, что «Методические рекомендации по применению ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой», являющиеся научными И практическими результатами диссертационной работы аспиранта ГБУ «НИИ «Респиратор» МЧС ДНР Ефименко В.Л., используются при подготовке специалистов по специальности 20.05.01 «Пожарная безопасность» И бакалавров направлению 20.03.01 «Техносферная безопасность» при изучении дисциплин «Профессиональная подготовка пожарного», «Пожарная спасательная техника», а также в научной деятельности академии в рамках выполнения научно-исследовательских работ

Начальник академий

М.Л. Кожевников

СПРАВКА

о внедрении результатов исследований диссертационной работы Ефименко Виталия Леонидовича на тему «Повышение эффективности устройств пожаротушения с газодинамическим принципом распыления жидкости», представленной на соискание ученой степени кандидата технических наук по специальности 05.26.03 «Пожарная и промышленная безопасность»

Диссертация выполнена в соответствии с Планами работы НИИГД «Респиратор» на 2018 – 2020 гг. в рамках научно-исследовательской и опытно-конструкторской работы № 11616036: «Разработать ранцевую установку для тушения локальных очагов пожара тонкораспыленной водой (устройство импульсного тушения пожаров)» при непосредственном участии Ефименко В.Л. в качестве ответственного исполнителя.

В результате проведенных исследований Ефименко В.Л. было разработано устройство пожаротушения с газодинамическим принципом распыления жидкости, которое показало себя эффективным средством пожаротушения. Разработанное устройство пожаротушения позволило достичь достаточной дальности огнетушащей тонкораспыленной жидкости и уменьшить реактивную силу отдачи, действующую на пожарного. Данное устройство непосредственно является одним из составляющих элементов конструкции ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой (далее – установка пожаротушения).

Разработанная и изготовленная НИИГД «Респиратор» МЧС ДНР при участии Ефименко В.Л. установка пожаротушения позволит улучшить тактические возможности оперативно-спасательных служб при тушении возникших пожаров.

Ранцевая установка пожаротушения позволит проводить тушение очагов пожаров (классов A, B, C) и загораний как внутри помещений, так и на открытом пространстве твердых и жидких продуктов, рекомендована

2

к использованию для штатного комплектования пожарно-спасательных подразделений МЧС ДНР, а также в качестве огнетушителя для локализации пожаров в помещениях, в которых предъявляются специальные требования к сохранности оборудования и документов.

Для повышения времени работы пожарного-спасателя в непригодной для дыхания среде установка пожаротушения снабжена дыхательным аппаратом, что позволит дополнительно проводить работы по тушению пожаров в задымленной зоне до 15 мин.

Подтверждение эффективности установки пожаротушения получило при проведении огневых испытаний. Так, 16.03.2020 г., совместно с представителями Департамента пожарно-спасательных сил и специальных формирований МЧС ДНР, Департамента Государственной военизированной горноспасательной службы МЧС ДНР и НИИГД «Респиратор» МЧС ДНР были проведены испытания, где успешно ликвидирован модельный очаг пожара класса 1А. Положительный результат показала установка пожаротушения при тушении реальных локальных очагов пожаров, происшедших в Донецкой Народной Республике.

Учитывая, что приоритетной задачей пожаротушения является локализация и подавление очагов возгорания на ранней стадии, применение изготовленной ранцевой установки пожаротушения позволит значительно снизить ущерб от пожара за счет своевременного его тушения.

В целях обеспечения пожарной безопасности МЧС ДНР заинтересовано в дальнейшем внедрении в оперативно-спасательные службы Донецкой Народной Республики разработанной ранцевой установки для тушения локальных очагов пожара тонкораснывенной водой.

Заместитель Министра МЧО ЛЕВ

«UI»

полковник службы гражданской защиты

2022

Д.В. Захаров

МЧС ДНР

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ «РЕСПИРАТОР» МИНИСТЕРСТВА ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ» (ГБУ «НИИ «РЕСПИРАТОР» МЧС ДНР»)

ул.Артема, 157, г. Донецк, 283048,тел. (062) 332-78-01, факс 332-78-78
Web:www.dnmchs.ru Идентификационный код 51001452 E-mail: respirator@mail.dnmchs.ru

УТВЕРЖДАЮ

Директор ГБУ НИИ «Респиратор» МЧС ДНР», п-р. техн. наук В.Г. Агеев

2022 г.

внедрения результатов исследований диссертационной работы аспиранта Ефименко Виталия Леонидовича на тему «Повышение эффективности устройств пожаротушения с газодинамическим принципом распыления жидкости»,

представленной на соискание ученой степени кандидата технических наук по специальности 05.26.03 – Пожарная и промышленная безопасность

Настоящим актом подтверждается использование в ГБУ «НИИ «Респиратор» МЧС ДНР» результатов диссертационной работы аспиранта Ефименко Виталия Леонидовича на тему «Повышение эффективности устройств пожаротушения с газодинамическим принципом распыления жидкости».

Тема диссертации аспиранта Ефименко В.Л. связана с Планами работ НИИГД «Респиратор» МЧС ДНР на 2018-2020 гг., утвержденными Министром МЧС ДНР.

При выполнении научно-исследовательской и опытно-конструкторской работы № 11616036 «Разработать ранцевую установку для тушения локальных очагов пожара тонкораспыленной водой (устройство импульсного тушения пожаров)» аспирантом Ефименко В.Л., в качестве ответственного исполнителя, были получены результаты теоретических и экспериментальных исследований, приведенные в диссертационной работе.

2

В результате выполненных исследований Ефименко В.Л. было разработано устройство пожаротушения с газодинамическим принципом распыления жидкости, которое показало себя эффективным средством пожаротушения. Разработанное устройство пожаротушения позволило достичь значительную дальность огнетушащей тонкораспыленной жидкости, при этом учтены безопасные условия работы для пожарного. Данное устройство непосредственно является одним из составляющих элементов конструкции ранцевой установки для тушения локальных очагов пожара тонкораспыленной водой.

Ранцевая установка для тушения локальных очагов пожара тонкораспыленной водой, разработанная при непосредственном участии аспиранта Ефименко В.Л., получила положительные отзывы и рекомендована к внедрению в оперативно-спасательные службы МЧС ДНР (справка о внедрении результатов исследований диссертационной работы МЧС ДНР от 07.07.2022), что позволит повысить эффективность тушения пожаров на начальной стадии их возникновения.

Результаты диссертационных исследований аспиранта Ефименко В.Л. могут быть в дальнейшем использованы при разработке технических средств для тушения локальных очагов пожара тонкораспыленной водой, поскольку данное научное направление является актуальным и значимым для повышения эффективности пожаротушения при ведении аварийно-спасательных работ.

Заместитель директора (по научной работе) д-р техн. наук, ст. науч. сотр.

А.Ф. Долженков

Ученый секретарь, канд. техн. наук

Cuel

И.Г. Старикова

Начальник научно-исследовательского отдела специальных средств ведения аварийно-спасательных работ

Г.И. Пефтибай

приложение ж

Государственное бюджетное учреждение «Научно-исследовательский институт «Респиратор» Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики»

УТВЕРЖДАЮ

Заместитель Министра
по делам гражданской обороны,
последствий стихийных бедствий

длугонной Народной Республики
полковник службы гражданской защиты

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению ранцевой установки для тушения локальных очагов пожара с газодинамическим принципом распыления жидкости

Пиректор ГБУ «НИИ «Респиратор» МЧС ППР»,

_В.Г. Агеев 2022 г.

Д.В. Захаров 2022 г.

Донецк 2022