Министерство по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики

Государственное бюджетное учреждение «Научно-исследовательский институт «Респиратор» Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики»

На правах рукописи

УДК 622.457.36:622.411.33

Мавроди Александр Викторович

ОБОСНОВАНИЕ ПАРАМЕТРОВ ПРОВЕТРИВАНИЯ ВЫЕМОЧНЫХ УЧАСТКОВ ПРИ ОТКЛЮЧЕНИИ СИСТЕМ ДЕГАЗАЦИИ

Специальность 05.26.03 – Пожарная и промышленная безопасность (по отраслям) (технические науки)

Диссертация

на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, старший научный сотрудник Агеев Владимир Григорьевич

Идентичность всех экземпляров ПОДТВЕРЖДАЮ Ученый секретарь диссертационного совета Д 01.027.01 кандидат технических наук

И.Г. Старикова

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА 1. СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЙ 12
1.1. Способы и средства управления газовыделением на выемочных участках,
условия применения систем дегазации
1.2. Состояние проветривания шахт Донецкой Народной Республики
1.3. Анализ методов оценки газовой обстановки в выемочных участках при
отключении систем дегазации
1.4. Анализ параметров эксплуатации и аварийность систем дегазации 30
1.5. Выводы к разделу 1, цель и задачи исследований
ГЛАВА 2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ
ДВИЖЕНИЯ МЕТАНА В УГОЛЬНО-ПОРОДНОМ МАССИВЕ
ВЫЕМОЧНОГО УЧАСТКА41
2.1. Математическая модель дегазации сближенных угольных пластов 41
2.2. Исследование динамики движения метана из сближенного угольного
пласта в дегазационную скважину
2.3. Математическая модель переходных газодинамических процессов в
выемочном участке при изменении параметров проветривания и дегазации 61
2.4. Выводы к разделу 2
ГЛАВА 3. ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
ГАЗОДИНАМИКИ В ВЫЕМОЧНЫХ УЧАСТКАХ75
3.1. Исследование влияния схем проветривания выемочных участков на
образование местных скоплении метана при отключении систем дегазации 75
3.2. Моделирование влияния дегазационных скважин на метановыделение из
сближенных угольных пластов
3.3. Моделирование влияния параметров работы системы газоотсоса на
воздухораспределение в горных выработках выемочного участка 88
3.4. Численные экспериментальные исследования динамики метановыделения
на выемочных участках при общем обесточивании шахт96

3.4.1. Результаты оценки газовой обстановки на выемочных участках шахты
им. А.Ф. Засядько
3.4.2. Результаты оценки газовой обстановки на выемочных участках шахты
«Щегловская-Глубокая»
3.4.3. Результаты оценки газовой обстановки на выемочном участке шахты
им. А.А. Скочинского
3.5. Выводы к разделу 3
ГЛАВА 4. РАЗРБОТКА РЕКОМЕНДАЦИЙ ПО ВЫБОРУ ПАРАМЕТРОВ
ПРОВЕТРИВАНИЯ ВЫЕМОЧНЫХ УЧАСТКОВ ПРИ ОТКЛЮЧЕНИИ
СИСТЕМ ДЕГАЗАЦИИ
4.1. Разработка метода прогноза абсолютного метановыделения на выемочном
участке по горно-геологическим данным при отключении дегазации
4.2. Апробация метода прогноза абсолютного метановыделения на выемочном
участке по горно-геологическим данным при отключении дегазации
4.3. Формирование резервов воздуха в шахтной вентиляционной сети при
отключении систем дегазации
4.3.1. Формирование резервов воздуха на выемочных участках
4.3.2. Формирование резервов воздуха на вентиляторах главного
проветривания
4.4. Разработка алгоритма расчета газовой обстановки в выемочных участках
при общем обесточивании горных предприятий
4.5. Оценка экономического эффекта от внедрения результатов работы 139
4.6. Выводы к разделу 4
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ А (обязательное) Рекомендации по выбору режимов
проветривания выемочных участков при отключении
систем дегазации и газоотсоса (копия) 166
ПРИЛОЖЕНИЕ Б (обязательное) Справка о внедрении результатов
диссертационного исследования в подразделения
ГВГСС МЧС ДНР (копия)

ВВЕДЕНИЕ

Актуальность работы. Угольная промышленность остается одной из основных отраслей экономики и топливно-энергетического комплекса многих стран. Вместе с тем, добыча полезного ископаемого зачастую сопровождается возникновением аварий техногенного характера с большими убытками для горного предприятия. Наиболее опасными авариями на угольных шахтах остаются взрывы газа и пыли, а также подземные пожары.

До начала 70-х годов XX столетия основным способом борьбы с повышенным метановыделением оставалось проветривание горных выработок большими объемами воздуха. Однако с развитием подземных способов добычи угля и разработкой более метаноносных угольных пластов использование одной лишь вентиляции стало недостаточным. Поэтому, на угольных шахтах Донбасса и за рубежом широкое применение получили системы дегазации с различными схемами и способами извлечения метана, что существенно позволило повысить добычу полезного ископаемого и безопасность ведения горных работ.

В процессе эксплуатации угольными шахтами систем дегазации возникают нештатные аварийные ситуации, связанные со снижением их эффективной работы или полного отключения. При этом происходит резкое увеличение газовыделения из выработанного пространства в исходящую вентиляционную струю выемочного участка, а это может привести к воспламенению и взрыву газовоздушной смеси.

Основными источниками поступления метана в выработанное пространство лав являются сближенные угольные пласты (спутники) и вмещающие породы, доля которых в газовом балансе выемочного участка составляет 60 – 90 %.

В зависимости от эффективности применяемой дегазации и горногеологических условий выемочного участка, ее отключение приводит к интенсивному росту метановыделения из выработанного пространства (1,3 – 3 раза). Переходный газодинамический процесс при отключении систем дегазации может длиться в течении нескольких часов и в дальнейшем стабилизируется на уровне фактического метановыделения выемочного участка без дегазации. Изучению таких процессов посвящено ряд научных работ и исследований ведущих институтов (НИИГД «Респиратор», МакНИИ, ДонУГИ и др.).

Опыт ликвидации аварийных ситуаций на системах дегазации показывает, что основным способом нормализации газовой обстановки в выработках выемочного участка остается сохранение нормального режима проветривания с возможностью подачи дополнительного расхода воздуха. Существенным недостатком данного режима проветривания является неконтролируемый процесс выноса метановоздушной смеси из выработанного пространства с высоким содержанием метана, что осложняет газовую обстановку и возможность ведения горноспасательных работ.

Следовательно, обоснование параметров проветривания выемочных участков при отключении систем дегазации и разработка научно-обоснованных методов прогноза газовой обстановки является актуальной научной-технической задачей.

Степень разработанности темы. Теоретические и практические исследования переходных газодинамических процессов в горных выработках шахт с дегазацией посвящены работы таких ученых как: Агеева В.Г., Алейниковой Г.М., Бродского В.Ш., Грекова С.П., Зинченко И.Н., Касимова О.И., Морева А.М., Пашковского П.С., Ушакова К.З. и др.

Совершенствование эффективных способов и схем проветривания выемочных участков рассмотрены в работах Болбата И.Е., Гущина А.М., Лебедева В.И., Палеева Д.Ю., Романченко С.Б., Калединой Н.О. и других ученых.

Тем не менее, несмотря на проведенные многочисленные исследования, существующие вентиляционные режимы и их параметры не всегда способны обеспечить безопасное содержание метана на выемочных участках при отключении систем дегазации, а методы прогноза газовой обстановки не позволяют достоверно оценить интенсивность метановыделения в зависимости от продолжительности возникновения аварийной ситуации.

Таким образом, возникает необходимость в исследовании газодинамических закономерностей формирования газовой обстановки в горных выработках

выемочных участков при отключении систем дегазации и обосновании эффективных параметров проветривания в целях повышения пожарной и промышленной безопасности шахт.

Связь работы с научными программами, планами, темами. Диссертация выполнена в соответствии с планом Государственного научно-исследовательского института горноспасательного дела, пожарной безопасности и гражданской защиты «Респиратор» на 2016 − 2018 гг. по работе № 11611043 «Исследовать состояние проветривания шахт, дегазационных систем, выемочных участков и расчеты вентиляционных режимов», «Исследовать методы расчета метановыделения и резервов воздуха на выемочных участках при отключении систем дегазации и газоотсоса», «Обосновать параметры и разработать Рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса». В указанной работе автор принимал участие в качестве исполнителя работы.

Цель и задачи исследований. Целью диссертационной работы является обоснование параметров проветривания выемочных участков на основе установления закономерностей формирования газовой обстановки при отключении систем дегазации для обеспечения пожарной и промышленной безопасности угольных шахт.

Для достижения поставленной цели, в работе необходимо решить следующие задачи:

- выполнить анализ существующих методов оценки газовой обстановки в выемочных участках шахт при отключении систем дегазации;
- выполнить теоретические и численные экспериментальные исследования газодинамики выемочных участков шахт при изменении параметров работы вентиляции и дегазации;
- исследовать влияние параметров работы системы газоотсоса на воздухораспределение по выработкам выемочного участка;

- разработать и апробировать метод прогноза абсолютного метановыделения
 на выемочном участке по горно-геологическим данным при отключении
 дегазации;
- разработать алгоритм расчета газовой обстановки в выемочном участке при общем обесточивании горного предприятия;
- выполнить оценку формирования резервов воздуха в вентиляционных сетях
 шахт и обосновать параметры подачи дополнительного расхода воздуха на выемочные участки для нормализации газовой обстановки.

Объект исследования – газодинамические процессы формирования метановоздушных потоков в выемочных участках шахт при отключении систем дегазации.

Предмет исследования — безопасные параметры проветривания выемочных участков для нормализации газовой обстановки за счет формирования резервов воздуха в вентиляционных сетях шахт.

Методы исследований. В работе использован комплексный метод исследований, включающий анализ и обобщение научно-технических достижений в области борьбы с метановыделением на выемочных участках при отключении систем дегазации, теоретические исследования с применением численных методов переходных газодинамических процессов, анализа исследование влияния параметров работы систем дегазации на воздухораспределение в выработках выемочных математической статистики обработки участков, методы экспериментальных данных.

Обоснованность и достоверность научных положений и рекомендаций подтверждается корректностью постановки использованием задач, фундаментальных законов газодинамики, соответствием установленных закономерностей фильтрации метана через угольно-породные толщи законам физики, удовлетворительной сходимостью результатов математического моделирования переходных газодинамических процессов в выемочных участках при изменении параметров проветривания и дегазации с фактическими данными, полученными в ходе ведения горноспасательных работ.

Научная новизна полученных результатов:

- 1. Установлена аналитическая зависимость расхода метана и воздуха в дегазационных скважинах при стационарных и нестационарных режимах фильтрации от создаваемого разрежения в дегазационной сети, которая отличается от известных возможностью прогнозирования динамики метановыделения из сближенных угольных пластов в выработанное пространство при отключении дегазации, что позволило повысить достоверность определения необходимого расхода воздуха для обеспечения пожарной и промышленной безопасности.
- 2. Установлена зависимость концентрации метана на выемочном участке от времени отключения дегазации при общем обесточивании горного предприятия, которая отличается от известных учетом совокупного влияния фильтрационнодиффузионных процессов в угольно-породном массиве, что позволило определить время образования взрывоопасной концентрации метана в вентиляционной струе и необходимый расход воздуха для нормализации газовой обстановки выемочного участка.
- 3. Обоснован принцип выбора безопасных параметров подачи дополнительного расхода воздуха из резервных источников вентиляционной сети шахты при отключении систем дегазации с учтем скорости вентиляционной струи, коэффициента увеличения расхода воздуха, площади поперечного сечения горных выработок и сложившейся газовой обстановки для эффективного проветривания аварийного участка и ведения горноспасательных работ.

Теоретическая и практическая значимость работы. Теоретическая значимость заключается в следующем:

- установлена зависимость расхода метановоздушной смеси в дегазационных скважинах при различных режимах фильтрации метана через угольно-породные толщи;
- установлена зависимость распределения относительной концентрации метана на выемочном участке от физических свойств пород кровли выработанного пространства;

– разработана математическая модель и алгоритм оценки газовой обстановки
 в выемочном участке при общем обесточивании горного предприятия.

Практическое значение полученных результатов заключается в следующем:

- разработана схема расчета параметров работы системы газоотсоса на воздухораспределение в выработках выемочного участка;
- разработан и нашел практическое применение достоверный метод прогноза газовой обстановки в выемочном участке при отключении дегазации для определения необходимого расхода воздуха с целью снижения метановыделения до предельно допустимых концентраций;
- разработаны «Рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса» (далее – Рекомендации).

Разработанные Рекомендации (приложение A) внедрены в горноспасательные подразделения МЧС ДНР (приложение Б) и используются при ликвидации аварий и аварийных ситуаций на горных предприятиях, эксплуатирующих системы дегазации.

Результаты диссертационных исследований используются ГБУ «НИИ «Респиратор» МЧС ДНР» при выполнении научно-исследовательских работ в области пожарной и промышленной безопасности.

Методология и методы исследования. При выполнении диссертационной работы использован комплексный подход, содержащий: анализ и обобщение результатов ранее выполненных исследований другими авторами; математическое и физическое моделирование: теоретические методы, основанные на фундаментальных законах термодинамики и фильтрации газов, неразрывности стационарных потоков с учетом процессов диффузии и фильтрации метана через угольно-породные толщи; методы математической статистики для обработки результатов экспериментальных исследований.

Положения, выносимые на защиту:

1. Научное обоснование степени влияния расхода метана и воздуха в дегазационных скважинах с учетом режимов фильтрации, в зависимости от

создаваемого разрежения в дегазационной сети, на параметры безопасной газовой обстановки выемочных участков при отключении дегазации.

- 2. Математическая модель процесса формирования объемной доли метана в лаве и выработанном пространстве выемочного участка при отключении дегазации и изменении расхода воздуха с учетом фильтрации газов в породах кровли выработанного пространства, коэффициентов пьезопроводности и диффузии метана.
- 3. Зависимость скорости вентиляционной струи от коэффициента, характеризующего увеличение расхода воздуха, площади поперечного сечения горных выработок и сложившейся газовой обстановки на выемочном участке, что позволило обосновать подачу дополнительного расхода воздуха из резервных источников вентиляционной сети шахты.

Степень достоверности и апробация результатов диссертационной работы. Обоснованность научных положений, выводов и рекомендаций принятыми подтверждена соответствием физическими предпосылками, базирующимися фундаментальных термодинамики; на законах удовлетворительной сходимостью результатов математического моделирования и фактических данных, полученных в ходе ведения горноспасательных работ, а также согласованностью результатов с экспериментальными данными других исследователей (отклонение не превышало 14 %); положительным результатом внедрения Рекомендаций.

Основные положения и результаты диссертационной работы докладывались и получили положительную оценку: на XV Международной конференции молодых ученых, аспирантов, студентов «Здания и сооружения с применением новых материалов и технологий» ДонНАСА (г. Макеевка 21-22 апреля 2016 г.); XII Международной научно-практической конференции «Пожарная и аварийная безопасность», посвященная Году пожарной охраны (г. Иваново, Российская Федерация, 2017 г.); Материалы Первой Республиканской научной конференции, посвященной Дню гражданской обороны в Донецкой Народной Республике, 85-летию образования гражданской обороны и образованию Академии гражданской

защиты МЧС ДНР (24-25 октября 2017 г.); XII Международной научнопрактической конференции «Безопасность жизнедеятельности предприятий в промышленно развитых регионах» (г. Кемерово 22-23 ноября 2017 г.).

Результаты работы доложены и обсуждены на заседании Ученого совета ГБУ «НИИ «Респиратор» МЧС ДНР» (протокол № 2 от 27.10.2022).

Личный вклад соискателя. Автором самостоятельно поставлена цель работы, определены задачи исследований, сформулированы основные положения, выводы, получены аналитические зависимости относительного метановыделения выработанном пространстве выемочного участка при изменении параметров проветривания и дегазации. Разработано программное обеспечение и метод прогноза абсолютного метановыделения на выемочном участке по горногеологическим данным при отключении дегазации. Обосновано безопасное увеличение расхода воздуха из резервных источников вентиляционной сети шахты.

Публикации. Научные и практические результаты диссертации изложены в 16 научных трудах, в том числе: 12 статей опубликованы в рецензируемых научных изданиях ВАК Минобрнауки ДНР; 4 статьи — в сборниках материалов научных конференций, входящих в наукометрическую базу РИНЦ; одна работа опубликована в виде рекомендаций.

Структура и объем диссертации. Диссертация состоит из введения, четырех разделов, выводов, заключения и списка литературы из 135 источников. Полный объем диссертации составляет 171 страницу, в том числе 150 страниц основного машинописного текста, 28 таблиц, 41 рисунок и два приложения.

РАЗДЕЛ 1

СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЙ

1.1. Способы и средства управления газовыделением на выемочных участках, условия применения систем дегазации

Добыча угля подземным способом на шахтах Донбасса связана с большим риском возникновения чрезвычайных ситуаций техногенного характера, что в свою очередь приводит к производственному травматизму и гибели людей. С увеличением глубины горных работ, ростом нагрузок на очистные забои, одним из осложняющих факторов подземной добычи угля является высокая газообильность шахт [12].

Управление повышенным метановыделением в таких случаях средствами вентиляции становится затруднительна и требует обоснованных решений [4, 120].

С развитием угольной отрасли, широкое применение на угольных шахтах Донбасса и за рубежом получили различные схемы и способы дегазации, что позволило существенно увеличить добычу полезного ископаемого и снизить нагрузку на производительность систем вентиляции.

Первую дегазацию угольных пластов и вмещающих пород в Донецком угольном бассейне начали применять с 1952 г., на шахте «Красная Звезда» (комбинат «Торезантрацит»). В последующие годы объем дегазации только увеличивался. Уже в 1969 г. дегазация применялась на 12-ти угольных шахтах центрального района Донбасса [74, 109].

Наиболее широко и успешно на шахтах Донбасса применяют дегазацию подрабатываемых сближенных угольных пластов скважинами, пробуренными из вентиляционных выработок с отводом метановоздушной смеси по газопроводу на поверхностные вакуум-насосные станции (далее – ВНС) [7, 37, 76, 89, 101, 119]. Впервые данный способ дегазации был применен в 1943 г., на шахтах Германии «Мансфельд» и «Луизенталь» [8].

В зависимости от схемы проветривания и условий поддержания выработок за лавой, данный способ дегазации имеет достаточно высокую эффективность (30-80%). При столбовой системе разработки с погашением вентиляционной выработки за лавой минимальная эффективность дегазации составляет 30-40%. Для схем проветривания с поддержанием вентиляционной выработки за лавой эффективность дегазации может достигать 60-80% [38, 117].

В последние годы уменьшилось общее количество работающих шахт и выемочных участков, что привело к снижению добычи угля и нагрузки на очистные забои. Вместе с тем, на шахтах Донецкой Народной Республики дегазацией отводится в среднем 35 % выделяющегося метана, а среднегодовой расход метана, каптируемый системами дегазации за 2021 г., составил 78,9 м³/мин.

Наиболее опасными авариями на угольных шахтах являются взрывы газа и пыли, а также подземные пожары, которые в среднем составляют 27 % от общего количества произошедших аварий на шахтах Донецкой Народной Республики за последние 8 лет (рисунок 1.1).

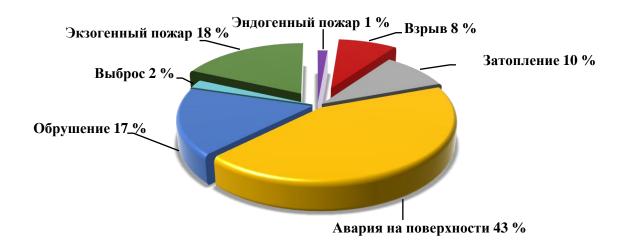


Рисунок 1 – Аварийность на шахтах Донецкой Народной Республики в период с 2014 по 2021 гг.

Проблема загазирования горных выработок остается одной из основных причин аварийности на угольных предприятиях. В 2020 году, более 30 % аварий на угольных шахтах происходило по причине образования местных и слоевых скоплений метана [11].

Согласно данным Государственного Комитета горного и технического надзора, среднее количество загазирований на шахтах Донецкой Народной Республики за последние восемь лет составило 240 случаев, из которых 176 технологических и 64 аварийных. Общее количество загазирований за 2021 г. в сравнении с 2020 г. увеличилось в 1,52 раза (рисунок 1.2).



Рисунок 1.2 – Динамика загазирований шахт Донецкой Народной Республики в период с 2014 по 2021 г.

Основной причиной взрыва метановоздушной смеси связано с образованием местных скоплений метана в горных выработках. Более 25 % случаев загазирований происходит в результате подачи недостаточного количества воздуха на выемочные участки. До 50 % горения метана происходит при нарушении технологии проветривания.

К наиболее частым сопутствующим причинам взрыва метановоздушной смеси послужили отступления от технологии ведения горных работ и низкая эффективность дегазационных работ [24, 49, 95, 115].

Применяемые в настоящее время схемы и способы управления метановыделением отличаются разнообразием и зависят от горнотехнических и горногеологических факторов. Основные способы управления метановыделением на выемочных участках шахт Донбасса, можно выделить следующие:

- дегазация подрабатываемых сближенных угольных пластов скважинами, пробуренными из вентиляционных выработок;
- дегазация подрабатываемых сближенных угольных пластов и вмещающих пород скважинами, пробуренными с поверхности;
- отвод метана из выработанного пространства отростками газопровода, закладываемого в выработанное пространство;
- изолированный отвод метана из выработанного пространства по неподдерживаемым выработкам с помощью общешахтной депрессии;
- отвод метана из выработанного пространства с помощью специальных газоотсасывающих установок с выпуском метановоздушной смеси в исходящую струю участка;

Реконструкция вентиляционных систем (увеличение сечения основных выработок) — дорогостоящий и длительный процесс. Обеспечение пожарной и промышленной безопасности по газовому фактору, связанно с повышением нагрузок на очистные забои и достигается путем увеличения дебита каптируемого метана системами дегазации.

Эффективность дегазации зависит от различных параметров и оценивается величиной снижения газообильности в горных выработках [42]. Однако, чем выше эффективность системы дегазации, тем более интенсивнее происходит выделение метана из выработанного пространства выемочного участка при ее отключении.

В зависимости от горно-геологических условий ведения горных работ, борьбу с повышенным метановыделением на угольных шахтах Донбасса осуществляют по двум направлениям: дегазация выработанного пространства и предварительная дегазация разрабатываемых угольных пластов.

Действующие нормативные документы [38, 103, 117] рассматривают дегазацию как равноценные с вентиляцией способ борьбы с метаном, но не решают вопросы безопасности работ в проектах и паспортах отработки лав при ее отключении. В тоже время, на отдельных шахтах дегазацией может отводиться до 60 % метана, то есть больше чем вентиляцией (ш/у «Покровское», «Комсомолец Донбасса», им. А.Ф. Засядько).

В соответствии с требованиями [38], дегазация применяется на тех участках, где невозможно обеспечить безопасную концентрацию метана средствами вентиляции и если не выполняется условие

$$\bar{I}_{yq} \le 0,007 \bar{Q}_{yq} \bar{C}_{yq},$$
 (1.1)

где \overline{I}_{y4} — средний дебит метана на выемочном участке, м³/мин;

 $\overline{Q}_{\rm yq}$ – средний расход воздуха в исходящей вентиляционной струе выемочного участка, м 3 /мин;

 $\overline{C}_{y^{4}}$ — норма содержания метана в исходящей вентиляционной струе выемочного участка согласно [103], %.

В общем случае область применения дегазации находится выше прямой, представленной на рисунке 1.3.

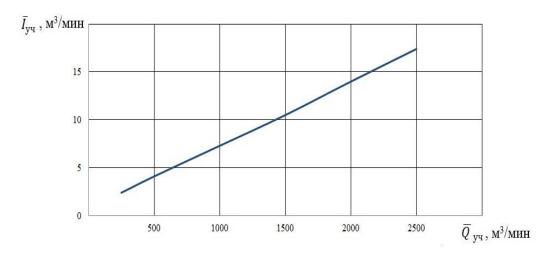


Рисунок 1.3 – Область применения дегазации

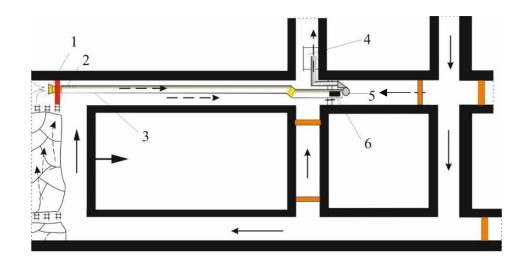
В настоящее время на территории Донецкой Народной Республики насчитывается восемь шахт и одиннадцать выемочных участков, где применяют системы дегазации (таблица 1.1). Газообильность выемочных участков составляет от 1,7 до 28,8 м³/мин.

Применение систем дегазации на отдельных выемочных участках не отвечает основным условиям ее эффективной работы. Например, на шахте № 22

«Коммунарская» при отработке 11-й западной лавы пласта k_5 , с нагрузкой на очистной забой 722 т/сут и подаче на выемочный участок 1515 м³/мин свежего воздуха, средняя объемная доля метана в исходящей вентиляционной струе участка составляла 0,14 %, то есть дегазация фактически не нужна.

Таблица 1.1 – Шахты Донецкой Народной Республики применяющие системы дегазации в 2022 г.

Шахта	Среднесу-	Газообиль- ность	Расход метана, каптируе-	Количество работающих лав	
	добыча $A_{\rm m}$, т/сут	шахты, м ³ /мин	мый дегазацией, м ³ /мин	с дегазацией	всего
им. А.А. Скочинского	771	26,23	4,01	1	2
«Комсомолец Донбасса»	5606	146,5	33,55	3	6
«Ждановская»	3220	45,25	13	1	3
«Калиновская-Восточная»	200	13,6	1,72	1	1
«Холодная Балка»	588	39,7	5,5	1	1
«Ясиновская-Глубокая»	157	9,8	3,4	1	1
«Щегловская-Глубокая»	600	17,3	6,6	2	2
№22 «Коммунарская»	124	34,4	18,9	1	2


Следует отметить, что на выемочных участках имеют место нестационарные (экстремальные) увеличения газовыделения из выработанного пространства при посадках основной кровли, работе лав в зоне геологических нарушений. В свое время на шахте им. С.М. Кирова практически во всех лавах восточного крыла пласта $h_{10}^{\rm B}$ наблюдалось выделение метана при первичной посадке основной кровли, приводящее к загазированию и остановке лав на несколько суток и срочному применению дополнительных мер борьбы с газом [48].

Одним из наиболее опасных мест образования местных скоплений метана являются погашаемые тупики вентиляционных выработок [3, 15, 16, 17, 84, 72]. В этом случае применяют изолированный отвод метана из выработанного пространства, с помощью газоотсасывающих установок [13]. Данный способ в

свое время нашел широкое применение на различных угольных шахтах Донбасса (ш. Засядько, «Шахтерская-Глубокая» и др.).

Газоотсасывающая установка состоит из вентиляторов местного проветривания (как правило ВМЦГ-7М) и газопровода диаметром 0,6...1,2 м и длиной от 600 до 1200 м. Объемная доля метана в газопроводе, согласно [103] не должна превышать 3,5 %.

В камере с обособленным проветриванием, размещают газоотсасывающую установку, которая состоит из двух параллельно установленных вентиляторов, работающих периодически на один газопровод (рисунок 1.4).

1 – всасывающий патрубок; 2 – переносная перемычка; 3 – газопровод; 4 – смесительная камера; 5 – газоотсасывающая установка; 6 – регулировочное окно

Рисунок 1.4 – Изолированный отвод метана из выработанного пространства с помощью газоотсасывающего вентилятора

Метановоздушная смесь отводится через перемычку в вентиляционной выработке, из тупика погашения, длина которого не должна превышать 6,0 м [38]. Выпускают метановоздушную смесь из газопровода в общую исходящую струю за пределами выемочного участка через смесительную камеру.

Таким образом, совместное применение различных схем проветривания выемочных участков и способов дегазации играют важную роль в обеспечении пожарной и промышленной безопасности горных предприятий.

1.2. Состояние проветривания шахт Донецкой Народной Республики

Практикой ведения горноспасательных работ установлено, что успех спасения людей, застигнутых в шахте аварией, эффективность действия горноспасателей по ее ликвидации, и размер материального ущерба во многом зависит от правильно выбранного и своевременно примененного вентиляционного режима [19].

Важную роль в обеспечении безопасности ведения горных работ играет эффективный выбор схем проветривания выемочных участков и средств борьбы с повышенным метановыделением. Наиболее надежным и безопасным способом компенсации увеличения газовыделения в выемочном участке является использование заранее заложенных резервов воздуха [99, 110, 125].

За последние годы (по состоянию на 2022 г.), ситуация по схемам проветривания выемочных участков принципиально не изменилась. Уменьшилось число работающих шахт, часть шахт получили повреждения в процессе боевых действий, что в целом привело к снижению добычи, сокращению общего числа работающих шахт и выемочных участков, в том числе применяющих дегазацию.

На угольных шахтах Донбасса, эксплуатирующих системы дегазации, применяют в основном столбовые системы разработки с прогрессивными схемами проветривания выемочных участков. С полным обособленным разбавлением вредностей типа 3-В-Н-в(г)-пт(вт) – 7 участков и типа 2-В-Н-н(г)-пт(вт) – 7 участков с частичным обособленным разбавлением вредностей.

На остальных шахтах применяют столбовую (8 участков) и сплошную (14 участков) систему разработки с возвратноточной схемой проветривания. Один выемочный участок отрабатывают по сплошной системе с подсвежением исходящей струи воздуха со стороны целика.

Ситуация по схемам проветривания, расходу воздуха и газовой обстановки на выемочных участках шахт Донецкой Народной Республики, применяющих системы дегазации (по состоянию на 2022 г.), представлена в таблице 1.2.

Таблица 1.2 – Аэрогазовые параметры выемочных участков шахт Донецкой Народной Республики, применяющих системы дегазации

		Схема	Среднесу-	Расход воздух	Объемная доля метана в	
Шахта	Лава	проветрива- ния	добыча участка, т/сут	поступающая на участок, м ³ /мин	на выходе из лавы, м ³ /мин	исходящей струе участка, %
	2 бис зап. лава пл. <i>l</i> ₄ бл. 5	3-В-Н-в-пт	162	1861	673	0,7
	2 -я вост. лава пл. l_3 бл. 2	3-В-Н-в-пт	887	3353	667	0,8
«Комсомолец Донбасса»	7-я вост. пл. <i>l</i> ₆ бл. 2	3-В-Н-в-пт	1053	1642	514	0,9
«комсомолец доноасса»	1-я зап. пл. <i>l</i> ₄ бл. 2 бис	3-В-Н-в-пт	1051	1901	777	0,9
	8-я зап пл. <i>l</i> бл. 4	3-В-Н-в-пт	1016	2328	744	0,8
	2 бис вост. пл. <i>l</i> ₃ бр.п.	3-В-Н-в-пт	524	1319	483	0,7
им. А.А. Скочинского	3-я вост. лава УПЦП	1-В-Н-в-пт	162	616	495	0,5
им. А.А. Скочинского	3-я зап. лава УПЦП	1-М-Н-в-пт	180	975	880	0,4
	8-я центральная пл. l_4	1-В-Н-в-вт	930	1023	1021	0,3
«Ждановская»	8-я зап. лава пл. <i>l</i> ₄	1-В-Н-в-вт	800	846	833	0,5
	9-я вост. пл.17	2-В-Н-в-пт	1490	1024	967	0,5
«Калиновская-Восточная»	6-я вост. пл l_1	2-В-Н-в-вт	584	930	868	0,27
«калиновская-восточная»	5-я вост. пл <i>l</i> ₁	2-В-Н-в-вт	388	1120	980	0,3
«Холодная Балка»	4-я вост. пл. h_{10}^{B}	1-В-Н-в-вт	200	1133	993	0,7
«Ясиновская-Глубокая»	3-я вост. разгр. пл. $l_2^{'}$	1-В-Н-в-вт	157	1040	851	0,2
иШариаракая Гиубакая	6-я вост. пл. <i>l</i> ₁	2-В-Н-в-вт	100	1150	950	0,5
«Щегловская-Глубокая»	1 -я вост. пл l_8	2-В-Н-в-вт	500	950	850	0,4
No 22 (Voyagraparage)	12-я вост. пл. <i>k</i> ₃	1-В-Н-в-вт	430	693	781	0,7
№ 22 «Коммунарская»	12-я зап. пл. <i>k</i> ₃	1-В-Н-в-вт	400	710	620	0,14

На рассмотренных 18 выемочных участках шахт, в том числе 11 выемочных участков, применяющих системы дегазации, согласно плану отработки и ввода новых лав, газоносность пластов непосредственно выемочных полей в основном превышала 15 м³/т с.б.м. В 50 % случаев используют возвратноточные схемы проветривания лав как при сплошной, так и при столбовой системах отработки выемочных полей (9 схем).

За прошедшие годы (2014 — 2022 г.) на угольных шахтах Донецкой Народной Республики не введено ни одного нового вентилятора главного проветривания (далее — ВГП). Следует отметить, что многие ВГП исчерпали свой нормативный срок службы и работают по специальным мероприятиям, разработанным специализированными институтами.

Наиболее распространенным является вентилятор ВЦД-31,5 (7 установок), ВЦД-3,3 (6 установок), ВОД-30М (4 установки).

На отдельных шахтах еще функционируют давно устаревшие ВГП ВЦ-5 (3 установки), ВОКР-1,8 (2 установки) и ВЦ-32 (2 установки). По одной установке оборудовано вентиляторами ВЦ-25, ВЦО-2,5 и ВОКД-1,8.

Подача воздуха ВГП колеблется в широких пределах от 1860 до 23656 м³/мин и обеспечивает подачу расчетного расхода воздуха в шахты, а депрессия колеблется от 638 до 7935 Па. Это связано с различной установкой лопаток рабочего колеса ВГП и широким диапазоном их типов.

Анализ производительности ВГП на шахтах Донецкой Народной Республики (таблица 1.3) показал, что 11 центробежных ВГП работают при полностью открытых лопатках направляющего аппарата или рабочего колеса, следовательно, не имеют возможности подачи дополнительного расхода воздуха по сети горных выработок. В связи с сокращением числа очистных и подготовительных забоев, 11 ВГП работают при установке лопаток рабочего колеса от 0 до 30° и от 50 до 70°. На семи ВГП лопатки расположены от 30 до 50° и на пяти ВГП от 70 до 90°, то есть работают не эффективно.

Таблица 1.3 – Характеристика параметров вентиляторов главного проветривания шахт Донецкой Народной Республики, применяющих системы дегазации

№ п/п	Шахта	Тип ВГП и место установки	Угол установки лопаток колеса или направляющего аппарата, °	Подача воздуха ВГП, м ³ /мин	Депрессия ВГП, Па	Депрессия шахты, Па	Величина естественной тяги, Па	Резерв ВГП по подаче, м ³ /мин
1	2	3	4	5	6	7	8	9
		ВЦД-3,3 1-й вост. вент. ствол	30	6850	205	1726	177	3648
1	им. А.А. Скочинского	ВЦД-31,5 скип. ствол	70	13320	170	1435	109	1560
		ВЦД-47У зап. вент. ствол № 2	70	9520	310	3007	314	1878
	«Комсомолец Донбасса»	ВЦД-47У главный ствол	90	23476	7900	7610	130	1350
2		ВЦД-47У вент. ствол № 1	90	23656	7890	7590	160	1280
		ВЦД-47У вент. ствол № 3	90	17090	7950	7650	110	1125
3	«Калиновская- Восточная»	ВЦ-31,5М скип. ствол	0	9300	4532	3678	266	755
	«Ждановская»	ВОКР-1,8 вост. вент. ствол	32	3372	3097	2850	16	648
4		ВОКР-1,8 вост. вент ствол	45	4554	4240	3042	15	1465
		ВОКД-1,8 ЦВС	30	2574	3497	3050	1	906
		ВОКР-1,8 2-й зап. вент. ствол	22	1860	3059	2700	4	1140

Продолжение таблицы 1.3

1	2	3	4	5	6	7	8	9
	«Холодная Балка»	ВОД-30М скип. ствол	35	8685	2996	2731	321	980
5		ВЦД-31,5 вент. ствол шахты «Южная»	40	8191	4445	4360	291	510
		ВЦ-5 зап. ВС	40	8910	3244	3069	191	2010
6	«Ясиновская-Глубокая»	ВЦД-3,3 скип. ствол	80	7590	2024	1329	212	3810
		ВЦО-2,5 вост. ВС	0	5454	2501	2256	171	560
7	«Щегловская-Глубокая»	ВЦД-31,5 скип. ствол	50	14952	3732	3149	421	900
		ВЦ-5 ВС	40	7194	3695	3453	413	1200
8	N. 22 K	ВОД-30М вент. ствол № 5	15	4590	2671	2580	130	872
	№ 22 «Коммунарская»	ВОД-30М2 людской ходок пл. <i>k</i> ₅	35	35 9348 4931	4931	4604	80	685

Таким образом, шахты Донецкой Народной Республики обеспечены расчетным расходом воздуха от 105 до 143 % и большинство ВГП имеют резервы по подаче, которые могут быть использованы для увеличения дополнительного расхода воздуха на выемочные участки при отключении систем дегазации с учетом применения специальных мероприятий, обеспечивающих безопасное усиление проветривания.

1.3. Анализ методов оценки газовой обстановки в выемочных участках при отключении систем дегазации

В процессе проведения горных работ в выемочных участках возникают геомеханические и газодинамические процессы, которые в свою очередь представляют собой сложную прогнозируемую систему [2, 32, 57, 62, 68, 126]. Обильное газовыделение в выемочных участках шахт Донбасса заставляют обращать особое внимание на данную проблему.

Практически каждый выемочный участок ввиду различных его параметров имеет индивидуальные газодинамические характеристики [45]. Выработанные пространства являются основным источником аккумулирования больших объемов метана в свободном состоянии. Существующие аэродинамические связи выработанного пространства с другими горными выработками позволяют управлять газовоздушными потоками с помощью аэродинамических параметров вентиляционной сети путем их перераспределения [51, 105, 107]. Скапливающийся метан в выработанном пространстве, обратно пропорционален величине утечек и прямо пропорционален интенсивности газовыделения, зависящего от скорости подвигания очистного забоя [52].

Вопросами оценки газовой обстановки в выемочных участках при отключении систем дегазации, посвящены работы многих ученых. Одни из авторов [92] предлагают формулу для определения прироста метановыделения Δq_t , при отключении дегазации менее 120 мин, по линейной зависимости, что не

соответствует характеру протекающих процессов в действительности

$$\Delta q_{\rm t} = 0.91 I_{\scriptscriptstyle \Pi} \sqrt{t_{\scriptscriptstyle \Pi}} \,, \tag{1.2}$$

где I_{π} – расход метана, отводимого дегазацией, м³/мин;

 $t_{\rm д}$ – время, прошедшее с момента отключения дегазации, мин.

С некоторым запасом значение I_{π} предлагают определять по формуле

$$I_{\pi} = q_{\text{max}} - q_{\pi}, \tag{1.3}$$

где q_{max} — максимальное метановыделение на выемочном участке при отключении дегазации, м 3 /мин;

 $q_{\scriptscriptstyle
m I}$ — метановыделение на выемочном участке при нормальной работе дегазации, м 3 /мин.

С учетом формул (1.2) и (1.3) прирост метановыделения в выработки выемочного участка можно представить в виде

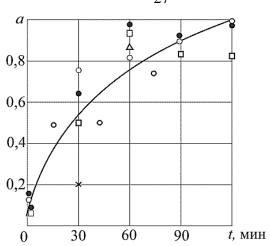
$$q_{\rm t} = q_{\rm A} + 0.91 (q_{\rm max} - q_{\rm A}) \sqrt{t_{\rm A}},$$
 (1.4)

Кроме того, в формуле (1.4) не учитывают увеличение метановыделения изза влияния самой дегазации.

В работах [40, 41] метановыделение на выемочном участке после отключения дегазации менее 120 мин, предлагают определять также по линейной зависимости, но уже с учетом дополнительного коэффициента влияния дегазации

$$q_{t} = q_{\pi} + 0.00835I_{\pi} \cdot k_{\text{BH}} \cdot t_{\pi}. \tag{1.5}$$

Приведенные выше зависимости дают значительные погрешности (более 25 %), особенно за пределами отключения дегазации более 120 мин.


Сравнительная оценка результатов расчетов по приведенным формулам и результатов экспериментальных наблюдений, проведенных в работах [9, 22, 23, 44, 53, 56, 70, 73], показывает, что даже в пределах 120 мин, расчетные значения метановыделения значительно выше фактических. Расчетные значения, полученные по предложенным формулам, свыше 120 мин в 5 – 6 раз превышают фактические показатели. В тоже время, выполнять расчеты по данным формулам не рекомендуют при продолжительности отключения дегазации более 120 мин, что имеет место на практике.

Большинство исследователей при изучении характера метановыделения на выемочном участке при отключении дегазации, указывают на влияние следующих параметров [14, 22, 23, 27, 40, 41, 56, 70, 91, 109, 113, 122, 134]:

- мощности разрабатываемого пласта;
- свойств основной и непосредственной кровли, шага их обрушения;
- мощности и расположения сближенных угольных пластов;
- расстояния от разрабатываемого угольного пласта до сближенных пластов и от лавы до зоны интенсивного метановыделения и др.

Процесс нарастания метановыделения растянут на некоторый промежуток времени и в дальнейшем стабилизируется на уровне, соответствующем отсутствием дегазации на участке. Уровень увеличения метановыделения на выемочном участке в первую очередь зависит от эффективности дегазации. Чем выше эффективность дегазации, тем дополнительное метановыделение в выработки участка будет интенсивнее при отключении системы дегазации.

На основании многочисленных экспериментов авторы [9, 23, 53, 56, 70] утверждают, что выделение метана на участке после отключения дегазации изменяется по закону, определяемому показательной функцией, что в большей степени соответствует фактическому изменению метановыделения на выемочном участке (рисунок 1.5).

- - шахта № 17-17 бис, 2-я западная лава;
- о шахта № 17-17 бис, 21 я восточная лава;
- × шахта им. Артема, пласт «Мазурка-Восток»;
- △ тот же пласт «Мазурка-Запад»;
- □ шахтоуправление № 11, 12-я западная лава

Рисунок 1.5 – Интенсивность роста метановыделения на выемочных участках

Для определения интенсивности метановыделения при отключении дегазации авторы используют следующую формулу [22, 104]

$$I_{\text{OTK}} = I_{\text{VY},\pi} - I_{\pi} \cdot e^{-a \cdot t_{\pi}}, \qquad (1.6)$$

где $I_{y_{4,\text{д}}}$ – метановыделение на участке при нормальной работе дегазации, м³/мин;

a – коэффициент, характеризующий интенсивность прироста метановыделения в исходящей вентиляционной струе выемочного участка при отключении дегазации, 1.

В данном случае авторами не учтены такие параметры как коэффициент увеличения газовыделения за счет дегазации, вынимаемую мощность разрабатываемого пласта и эффективность дегазации.

В развитие данного метода авторы [56] констатируют длительность стабилизации метановыделения после прекращения дегазации в пределах до 6 ч, учитывают коэффициент увеличения метановыделения при дегазации сближенных угольных пластов.

На основании результатов исследований, авторы предлагают новую формулу для определения дополнительного метановыделения в выработки выемочного участка $I_{\text{отк}}$, в виде

$$I_{\text{отк}} = I_{\text{уч.}, \pi} - \left(q_{\pi} + \frac{I_{\pi}}{k_{\text{B}}} \cdot e^{-a \cdot t_{\pi}} \right), \tag{1.7}$$

 $k_{\rm B}$ – коэффициент увеличения метановыделения при дегазации сближенных угольных пластов, 1.

Значение явно завышенного коэффициента увеличения газовыделения авторы рекомендуют принимать в пределах 1...2, в зависимости от разрежения в дегазационных скважинах [56], не давая разъяснений как его определить. По утверждению авторов, относительная ошибка формулы (1.7) в сравнении с фактическими данными не превышает 26 %.

Следует отметить, что сближенные угольные пласты, располагаемые в зоне обрушения непосредственной кровли на расстоянии примерно до 8-ми мощностей вынимаемого пласта отдают метан непосредственно в выработанное пространство и практически не дегазируют скважинами [51, 91, 107], поэтому в расчетах эффективности дегазации не должны учитываться.

В случае отсутствия каких-либо данных для определения дополнительного метановыделения при остановке дегазации авторы предлагают упрощенную формулу

$$I_{\text{OTK}} = \frac{I_{\text{M}}}{k_{\text{B}}} \left[1 - \left(1 - \frac{t_{\text{M}}}{t_{\text{CT}}} \right)^{1.5} \right],$$
 (1.8)

где $t_{\rm cr}$ — среднее время стабилизации метановыделения при отключении дегазации, $t_{\rm cr} = 4$ ч.

При определении коэффициента интенсивности метановыделения из сближенных угольных пластов учитывается только мощность разрабатываемого угольного пласта и не указано как поступать при наличии нескольких сближенных пластов. Также не учитывается шаг посадки основной кровли и абсолютное метановыделение в выемочном участке.

Методика оценки газовой обстановки на выемочном участке после отключения дегазации [124] рассматривает два показателя: среднюю объемную долю метана в исходящей струе и скорость вентиляционной струи, которая препятствует образованию слоевых скоплений метана.

Среднюю по поперечному сечению вентиляционной выработки объемную долю метана C_{cp} , в исходящей струе участка предлагают определять по формуле

$$C_{\rm cp} = C_0 + 100 \frac{I_0 + \Delta I_{\rm g}}{Q_{\rm yq}},$$
 (1.9)

где C_0 – объемная доля метана в поступающей на участок струе воздуха, %;

 I_0 – количество метана, отводимое из участка средствами вентиляции при нормальной работе системы дегазации, м 3 /мин;

 Q_{vy} – расход воздуха в выемочном участке, м³/мин.

Дополнительное метановыделение на выемочном участке после отключения дегазации $\Delta I_{\scriptscriptstyle
m I}$ определяют по формуле

$$\Delta I_{\pi} = \frac{I_{\pi}}{k_{\text{pa}}}, \qquad (1.10)$$

где $k_{\text{ва}}$ — коэффициент, учитывающий прирост газовыделения из сближенных угольных пластов при дегазации, 1.

Если $C_{\rm cp} \ge 2,0$ %, тогда определяют необходимую подачу воздуха на участок $Q_{\rm min}$, для снижения объемной доли метана до 2,0 % по формуле

$$Q_{\min} = \frac{100(I_0 + \Delta I_{\pi})}{C_{\pi}},\tag{1.11}$$

где $C_{\rm д}$ – предельно допустимая объемная доля метана, $C_{\rm д}$ = 2,0 %.

Анализ показывает, что формула (1.9) дает завышенные значения C_{cp} , по сравнению с фактическими значениями, так как метан поступающий на выемочный участок со свежей вентиляционной струей, учитывают дважды, а допустимое значение C_0 , может достигать 0,5 %.

Значения параметров принимают средние по поперечному сечению вентиляционной выработки, а не за установленный промежуток времени, как это принято в нормативных документах [38, 117] (за три месяца), что может давать погрешность в пределах коэффициента неравномерности газовыделения, изменяющегося от 1,28 до 1,66.

Методика базируется на разовом определении параметров, что приводит к большим расхождениям при периодических замерах, так как не учитывают коэффициент неравномерности метановыделения $k_{\rm H}$.

Большинство рассмотренных методов прогнозирования газовой обстановки [57, 63, 66, 67, 102, 118], описывают переходные газодинамические процессы в выработанном пространстве без учета изменения параметров работы систем дегазации. Отсюда вытекают требования к достоверности результатов, так как неверный прогноз метановыделения на выемочном участке может привести к негативным социальным и экономическим последствиям.

1.4. Анализ параметров эксплуатации и аварийность систем дегазации

Системы дегазации шахт Донецкой Народной Республики находятся в достаточно сложном техническом состоянии и недостаточно эффективны за редким исключением (шахты «Комсомолец Донбасса», № 22 «Коммунарская», «Щегловская-Глубокая»). Средний показатель эффективности дегазации выемочных участков шахт Донецкой Народной Республики составляет 49 %.

Согласно выполненному анализу (таблица 1.4), на пяти шахтах, дегазацией отводится менее 5,0 м³/мин метана, т.е. дегазацию применяют чисто формально. На отдельных шахтах применение дегазации не отвечает основным условиям ее эффективной работы. Например, на шахте \mathbb{N}_2 22 «Коммунарская» в 12-й западной лаве пласта k_3 при нагрузке на очистной забой 722 т/сут и подаче на участок 1515 м^3 /мин свежего воздуха, объемная доля в исходящей вентиляционной струе составляла 0,14 % [87].

 ω

Таблица 1.4 – Газодинамические параметры шахт Донецкой Народной Республики, применяющих системы дегазации

№ п/п	Шахта	Лава	Газовыделение на выемочном участке при нормальном режиме дегазации $I_{\text{уч.д}}$, $\text{м}^3/\text{мин}$	Газовыделение из выработанного пространства при нормальном режиме дегазации $I_{\text{вп}}$, м 3 /мин	Средний расход метана, каптируемый дегазацией $\Delta I_{\rm д}$, м 3 /мин	Коэффициент эффективности дегазации, $k_{\rm J}$
		2-я зап. пл. ℓ_4 бл. 5	9,67	2,80	5,40	0,55
1	«Комсомолец Донбасса»	1-я зап. пл. ℓ_4 бл. $2^{\text{бис}}$	13,50	3,10	8,43	0,62
		7-я вост. пл. ℓ_6 бл. 2	9,19	3,30	5,17	0,56
2	им. А.А. Скочинского	3-я вост. лава УПЦП	3,53	1,56	1,52	0,43
3	«Ждановская»	9-я вост. пл. <i>l</i> ₇	11,75	4,15	5,35	0,45
4	«Калиновская- Восточная»	6-я вост. пл. l_1	6,23	2,3	1,93	0,31
5	«Холодная Балка»	4-я вост. пл. h10в	7,21	3,88	3,15	0,44
6	«Ясиновская-Глубокая»	3-я вост. разгр. пл. l_2	4,44	3,24	1,2	0,27
7	«Щегловская-Глубокая»	6-я вост. пл. l_1	13,32	5,5	7,74	0,58
		1 -я вост. пл. l_8	7,02	2,76	2,26	0,32
8	№22 «Коммунарская»	12-я вост. пл. <i>k</i> ₃	15,26	6,15	6,9	0,45

Анализ таблицы 1.4 показывает, что фактическая эффективность дегазации в настоящее время колеблется от 0,27 до 0,62.

Практически на большинстве угольных шахтах Донецкой Народной Республики требуется модернизация систем дегазации («Щегловская-Глубокая», «Ждановская», им. А.А. Скочинского и др.).

Сокращение за последние годы объемов дегазационных работ (таблица 1.5) является следствием проведенной реструктуризации угольной промышленности и закрытием шахт. Многие шахты не в состоянии приобретать необходимое оборудование и аппаратуру для дегазационных работ, что также снижает эффективность каптажа метана.

Таблица 1.5 – Сравнение параметров работы систем дегазации на угольных шахтах Донецкой Народной Республики

Наименование параметра		Год		
	2016	2022		
Количество газовых шахт с дегазацией	10	8		
Среднесуточная добыча в течение года, тыс. / т	19,11	13,25		
Метановыделение из шахт с дегазацией, млн м ³ /год	286,0	115,4		
Каптировано метана, млн м ³ /год	92,7	36,32		
Средний коэффициент дегазации, %	32,4	45		
Среднее содержание метана в каптируемой смеси, %	33,6	35,4		

Основными причинами недостаточной эффективности дегазации являются:

- большая протяженность и неудовлетворительное состояние газопроводов;
- необходимость повторного использования газопроводов из-за отсутствия новых;

- неудовлетворительная герметизация устьев скважин, что увеличивает подсосы воздуха, тем самым снижая концентрацию каптируемой метановоздушной смеси;

- отсутствие необходимого оборудования.

Шахты Донецкой Народной Республики в настоящее время применяют в основном следующие типы вакуум-насосов: HB-50, BBH-50, BBH2-150 и ДВВН-150.

На некоторых шахтах («Ждановская», им. А.А. Скочинского) используют временные подземные дегазационные установки для отдельных очистных забоев, которые как правило, выбрасывают отсасываемую смесь в действующие выработки с исходящий струей воздуха, где она разбавляется воздухом до безопасных концентраций.

Таким образом, средняя эффективность дегазации на рассматриваемых шахтах составляет 49 %, содержание метана в каптируемых смесях выросло до 35,4 %, что говорит о повышении внимания к эксплуатации систем дегазации. Вместе с тем большая часть систем дегазации нуждается в модернизации и реконструкции (замена отработавших свой ресурс вакуум-насосов, газопроводов, и автоматических систем контроля), что требует выделение дополнительного финансирования и негативно сказывается на безопасную их эксплуатацию.

Правилами безопасности в угольных шахтах предусмотрена разработка специальных мероприятий по управлению системой дегазации при пожарах в выработках, где расположены дегазационные газопроводы [103]. Вместе с тем, нарушение работы дегазации на первоначальном этапе представляет большую опасность резкого увеличения содержания метана в исходящей вентиляционной струе выемочного участка, что может стать причиной взрыва метановоздушной смеси с труднопрогнозируемыми последствиями для работников шахты и горноспасателей.

Изменение параметров работы систем дегазации оказывает существенное влияние на газовыделение в горные выработки выемочного участка. В процессе эксплуатации систем дегазации имеют место как технологические работы (удаление

воды, ремонт газопровода, регламентные работы и др.), так и аварийные ее остановки (отключение электроэнергии, разгерметизация газопровода, выход из строя ВНС и др.), что приводит к росту метановыделения в выработках выемочного участка. Интенсивность роста метановыделения происходит в течении 2...4 часов, а затем нормализуется на уровне метановыделения выемочного участка без дегазации [27].

Установлено [33, 50, 98, 133], что при высоких нагрузках на очистные забои, концентрация метана в исходящих вентиляционных струях выемочных участков, при остановке систем дегазации может увеличиваться (1,3 – 3,0 раза) в зависимости от эффективности системы дегазации. В этом случае, переходный газодинамический процесс может существенно изменить газовую обстановку выемочного участка, а в отдельных случаях вызвать образование слоевых скоплений метана в горных выработках.

Несмотря на полную практическую обеспеченность шахт расчетным расходом воздуха периодически имеют место загазирования очистных и подготовительных выработок. Аварийные ситуации, связанные с изменением параметров работы системы дегазации на выемочном участке, могут привести к сложным и затяжным авариям с человеческими жертвами. Так, 04.03.2015 в результате изменения параметров работы системы дегазации в выемочном участке восточной уклонной лавы \mathbb{N}_2 3 пласта m_3 шахты им. А.Ф. Засядько произошла техногенная авария [43]. Причиной аварии послужил взрыв метановоздушной смеси.

В результате взрыва было смертельно травмировано 33 работника шахты, повреждены дегазационные газопроводы и разрушены вентиляционные шлюзы: 15-го восточного конвейерного штрека пласта m_3 , вспомогательного уклона № 15, вентиляционного ходка восточной уклонной лавы № 3 пласта m_3 (рисунок 1.6). Изза разрушения вентиляционных шлюзов было нарушено проветривание аварийного участка и произошло опрокидывание вентиляционной струи.

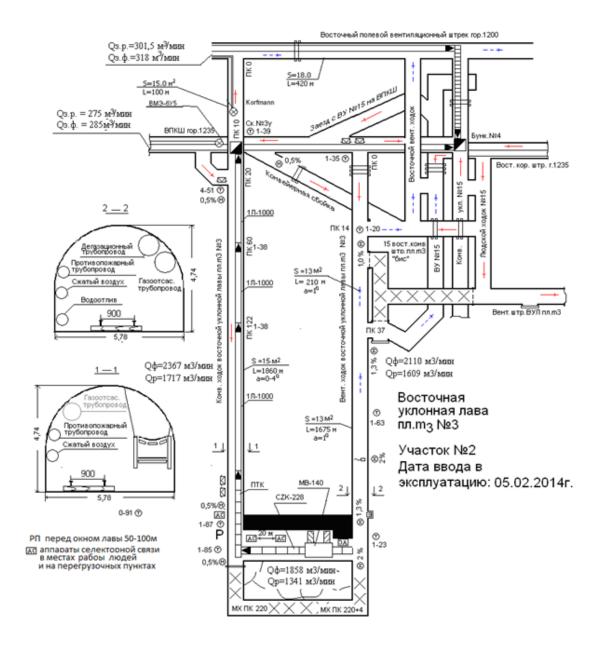


Рисунок 1.6 – Схема аварийного участка восточной уклонной лавы № 3 пласта m_3 шахты им. А.Ф. Засялько

Дегазация аварийного участка характеризовалась следующими фактическими показателями:

- эффективность дегазации кровли 0,17 (при проектной 0,41);
- эффективность дегазации выработанного пространства 0,39 (при проектной 0,95);
- общая эффективность комплексной дегазации выемочного участка -0.49 (проектное значение -0.82).

Таким образом, достигнутая накануне аварии эффективность дегазации

выемочного участка оказалась гораздо ниже проектного показателя.

В ходе расследования экспертной комиссией причин аварии установлено следующее:

- снижение эффективности дегазации кровли вызвано нарушением герметичности дегазационных скважин, вследствие длительного простоя выемочного участка;
- резкое снижение эффективности дегазации выработанного пространства произошло вследствие повреждения взрывоопасным предметом участка газопровода диаметром 630 мм, проложенного на поверхности к ВНС № 4.

После повреждения указанного газопровода, отвод метановоздушной смеси из выработанного пространства по вентиляционному ходку осуществлялся не вакуум-насосами (как предусмотрено проектом дегазации), а за счет общешахтной депрессии. В результате этого расход каптируемой метановоздушной смеси снизился с 160 до 30 м³/мин.

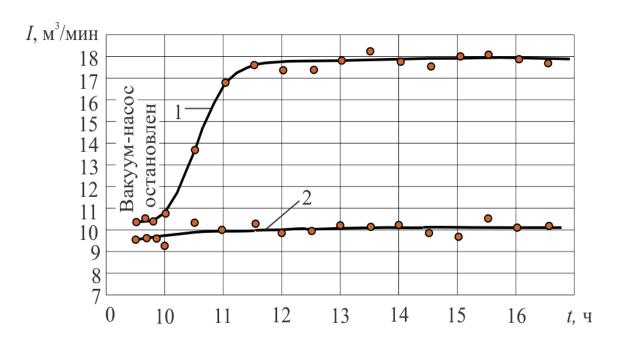
Расход воздуха, подаваемый на выемочный участок до возникновения аварии, составлял порядка 1780 м³/мин. При этом общий поток утечек воздуха через выработанное пространство составлял около 400 м³/мин. С учетом того, что дегазационными системами отбиралось порядка 160 м³/мин воздуха, к сопряжению лавы с вентиляционным ходком подавалось 240 м³/мин воздуха.

Средняя объемная доля метана в утечках воздуха на выходе из выработанного пространства составляла 6,2 %, что превышало нижний предел взрываемости. Максимальные значение объемной доли метана в утечках воздуха за дощато-парусной перемычкой достигало 8 – 10 %. Объемная доля метана в местах расположения работающих «свечей» газоотсоса вентиляционного и конвейерного ходка составляла порядка 7,3...8,2 %. Соответственно, дегазационные газопроводы были также заполнены взрывоопасной метановоздушной смесью.

Из вывода комиссии по расследованию причин аварии следует, что перед взрывом в течение продолжительного периода времени на сопряжении лавы с вентиляционным ходком в газопроводах и в выработанном пространстве установилась взрывоопасная газовая обстановка.

К технологическим отключениям дегазации относятся переход с рабочего вакуум-насоса на резервный и удаление воды из газопровода. Дегазация должна осуществляться непрерывно. Разрешено устанавливать технологические перерывы продолжительностью не более 30 мин, предусмотренные графиком работы вакуум-насосных станций [38, с. 74].

Работы по ремонту ВНС и демонтажу газопровода производят, как правило, заранее запланировано и только после отключения дегазации и предварительной продувки ее воздухом.


В зависимости от проводимого регламента ремонтных работ на системах дегазации отключение может составлять от нескольких минут до нескольких часов по специально разработанным мероприятиям. Количество отключений по этой причине находятся в пределах 5...10 % от общего количества простоев систем дегазации.

В таблице 1.6 представлен анализ основных причин отключения систем дегазации на шахтах Донбасса за последние 5 лет.

Таблица 1.6 – Основные причины отключений систем дегазации

	Время отключения, мин					Средняя
Причина отключения	010	1120	2130	>30	Всего	продолжительность отключения, мин
Удаление воды из газопроводов	34	8	12	4	58	16
Отсутствие электроэнергии и неисправность электрооборудования	13	12	8	18	51	31
Переход с рабочего вакуум-насоса на резервный	18	3	4	2	27	15
Ремонт вакуум- насосной станции	2	3	2	12	19	43
Другие	16	4	6	1	27	14,7

Результаты наблюдений [89] за метановыделением при отключении дегазации на участке коренной северной лавы шахты «Чайкино-Глубокая» № 1 подтверждают то, что поступление метан в лаву при сплошной системе разработки и неплотных изоляторах у вентиляционной выработки (кривая 2) практически не изменяется (рисунок 1.7).

^{1 –} исходящая вентиляционная струя воздуха из участка;

Рисунок 1.7 – Результаты наблюдений за метановыделением на выемочном участке шахты «Чайкино-Глубокая» № 1 при отключении дегазации

В период наблюдений к газопроводу было подключено 5 дегазационных скважин, по которым снимались сведения о концентрации и дебите метана. Расстояние между дегазационными скважинами по простиранию угольного пласта составляло 50 – 60 м.

В то же время метановыделение в исходящую вентиляционную струю выемочного участка существенно возрастает (кривая 1). Отдельные авторы [6, 60, 65, 94, 98] уточняют данное положение тем, что при применении герметичных изоляторов вдоль вентиляционной выработки способствует поступлению метана из выработанного пространства в лаву.

^{2 –} исходящая вентиляционная струя воздуха из лавы

1.5. Выводы к разделу 1, цель и задачи исследований

Проведенный анализ состояния проветривания шахт Донецкой Народной Республики, методов оценки газовой обстановки в выемочных участках, параметров эксплуатации и аварийности на системах дегазации показал следующее:

- средняя динамика загазирований по шахтам газовым шахтам Донецкой Народной Республики за 2014 2021 гг. составила 240 случаев, из которых 176 технологических и 64 аварийных;
- наличие резервов воздуха на ВГП составляет порядка 105 143 %, что можно использовать для подачи дополнительного расхода воздуха на выемочные участки при отключении систем дегазации с учетом применения специальных мероприятий, обеспечивающих безопасное усиление проветривания;
- порядок нормализации газовой обстановки на выемочном участке при отключении систем заключается в том, что на первом этапе необходимо спрогнозировать динамику газовыделения во времени, а затем с помощью подачи дополнительного расхода воздуха исключить образование в исходящей вентиляционной струе участка опасных концентраций метана;
- существующие методы оценки газовой обстановки на выемочных участках при отключении систем дегазации не являются универсальными и имеют большие погрешности при расчетах (26 % и более) в сравнении с фактическими данными. Также в рассмотренных методах не учтены основные параметры (коэффициент увеличения метановыделения из выработанного пространства, среднее расстояние от разрабатываемого до сближенных угольных пластов по нормали, расстояние от забоя лавы до зоны разгрузки сближенных угольных пластов, расстояние по нормали между разрабатываемым и сближенными угольными пластами), влияющие на выработанного процессы газовыделения ИЗ пространства при дегазации сближенных угольных пластов;
- эффективность каптажа метана из угольно-породного массива зависит от геометрических параметров дегазационных скважин и их герметизации, а также от выбранной технологической схемы дегазации. Изменение любого из

перечисленных факторов приводит к изменению режима работы всей дегазационной сети, что негативно сказывается на газовой обстановке выемочного участка.

Таким образом, целью диссертационной работы является обоснование параметров проветривания выемочных участков на основе установления закономерностей формирования газовой обстановки при отключении систем дегазации для обеспечения пожарной и промышленной безопасности угольных шахт.

Для достижения поставленной цели, в работе необходимо решить следующие задачи:

- выполнить теоретические и численные экспериментальные исследования газодинамики выемочных участков шахт при изменении параметров работы вентиляции и дегазации;
- исследовать влияние параметров работы системы газоотсоса на воздухораспределение по выработкам выемочного участка;
- разработать и апробировать метод прогноза абсолютного метановыделения
 на выемочном участке по горно-геологическим данным при отключении дегазации;
- разработать алгоритм расчета газовой обстановки в выемочном участке при общем обесточивании горного предприятия;
- выполнить оценку формирования резервов воздуха в вентиляционных сетях шахт и обосновать параметры подачи дополнительного расхода воздуха на выемочные участки для нормализации газовой обстановки.

РАЗДЕЛ 2

ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ДВИЖЕНИЯ МЕТАНА В УГОЛЬНО-ПОРОДНОМ МАССИВЕ ВЫЕМОЧНОГО УЧАСТКА

2.1. Математическая модель дегазации сближенных угольных пластов

Поскольку дегазация сближенных угольных пластов, является одним из основных способов извлечения метана на шахтах Донбасса, рассмотрим влияние режимов работы скважин на газовыделение из сближенных угольных пластов.

Эффективность дегазации сближенных угольных пластов зависит от горногеологических, физико-механических свойств вмещающих пород, схемы расположения дегазационных скважин, расстояния между скважинами и создаваемого в них разрежения [41, 69, 75, 88, 135]. Выделение метана из сближенных угольных пластов имеет место во всех случаях и зависит от газовой проницаемости сближенного угольного пласта и вмещающих пород.

Поэтому, процессы движения метана из сближенных угольных пластов через разгруженный породный массив в выработанное пространство лавы при различных параметрах дегазации, в настоящее время до конца не изучены и представляют научный интерес для дальнейших исследований.

Однако исследование данных процессов в условиях действующих выемочных участков шахт не представляется возможным. Также невозможно воссоздать процессы, протекающие в выработанном пространстве и в лабораторных условиях. Поэтому в данном случае исследование процессов движения метановоздушной смеси в угольно-породном массиве выемочных участков будут выполняться с помощью математического моделирования.

В горном массиве, залегающем над разрабатываемым угольным пластом, образуются три зоны горных пород, а именно: беспорядочного обрушения, плавных прогибов с разрывом сплошности пород и зона плавных прогибов без разрыва сплошности пород (рисунок 2.1) с мощностью соответственно H_1 , H и H_2 [128].

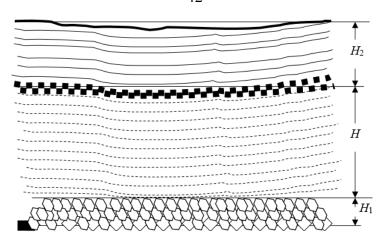
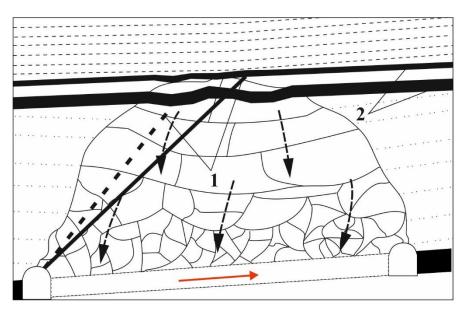



Рисунок 2.1 – Схема разгрузки горного массива и сближенных угольных пластов вдоль простирания разрабатываемого пласта

В зоне плавных прогибов с разрывом сплошности пород сближенные угольные пласты разгружаются от горного давления и с помощью дегазации в данной зоне можно достичь наибольшего эффекта по снижению газовыделения [88]. Вследствие разгрузки горного массива, проницаемость сближенных угольных пластов и окружающих пород возрастает во много раз по сравнению с нетронутым массивом. Выделяющийся из сближенных угольных пластов метан через зону плавных прогибов с разрывом сплошности пород проникает в зону беспорядочного обрушения и утечек воздуха (рисунок 2.2).

1 – дегазационные скважины; 2 – сближенные угольные пласты

Рисунок 2.2 – Схема движения метана через разгруженный породный массив в выработанное пространство

Давление газа в сближенных угольных пластах больше, чем давление в выработанном пространстве, а в скважинах значительно меньше, чем в зоне утечек воздуха.

В соответствии с [38, с. 82] при расчете параметров дегазационного трубопровода принимают величину вакуума в устьях дегазационных скважин равной 50 мм рт.ст. (6,67 к Π a).

Для описания процессов движения метана через разгруженный породный массив под действием градиентов давления необходимо знать их связь со скоростями газовоздушных потоков. С этой целью используем уравнение неразрывности стационарного потока газа в трех измерениях [78, 79]

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = j, \qquad (2.1)$$

где ρ – плотность метана в фильтрационном потоке, кг/м³;

u — проекция скорости фильтрации газа на ось x, направленной вдоль простирания разрабатываемого угольного пласта, м/с;

v – проекция скорости фильтрации на ось y, направленной по восстанию угольного пласта, м/с;

w – проекция скорости фильтрации на ось z, направленной по нормали к разрабатываемому угольному пласту, м/с;

j – интенсивность внутренних источников метановыделения из сближенных угольных пластов в единице объема, кг/($c \cdot m^3$).

Считая, что в зоне плавных прогибов с разрывом сплошности пород режим течения газов ламинарный, тогда уравнение стационарной фильтрации в проекциях на оси координат представим в виде [129]:

$$-\frac{\partial P}{\partial x} = \frac{v}{k_x} \rho u; \quad -\frac{\partial P}{\partial y} = \frac{v}{k_y} \rho v; \quad -\frac{\partial P}{\partial z} = \frac{v}{k_z} \rho w, \tag{2.2}$$

где P — давление метана в обрушенной зоне выработанного пространства лавы, Па;

v – кинематическая вязкость газа, m^2/c ;

 k_x , k_y , k_z — коэффициенты проницаемости зоны плавных прогибов с разрывом сплошности пород в направлениях x, y, z, m^2 .

Используя уравнение (2.2) и уравнение фильтрации через породную толщу [88] получим

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial P}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial P}{\partial z} \right) + \nu j = 0.$$
 (2.3)

При постоянных коэффициентах проницаемости горных пород вдоль разных направлений уравнение (2.3) примет вид

$$k_x \frac{\partial^2 P}{\partial x^2} + k_y \frac{\partial^2 P}{\partial y^2} + k_z \frac{\partial^2 P}{\partial z^2} + vj = 0, \qquad (2.4)$$

Интенсивность метановыделения из сближенных угольных пластов в зону беспорядочного обрушения горных пород можно представить как функцию газовыделения из частиц угля во времени [28, 31]

$$j(x) = \frac{\rho \frac{\phi}{D}}{\left(\frac{\phi}{D} - 1\right) H l_{\pi}} \cdot \sum_{i=1}^{n} q_{CHi} \left[\exp(-x) - \exp\left(-\frac{\phi}{D}x\right) \right], \tag{2.5}$$

где ф - коэффициент десорбции метана, м/ч;

D – коэффициент диффузии метана, м²/с;

H – мощность зоны плавных прогибов с разрывом сплошности пород, м;

 $l_{\scriptscriptstyle \rm I}$ – длина лавы, м;

n — количество сближенных угольных пластов;

 $q_{\it CHi}$ — дебет метана из i-го сближенного угольного пласта, м 3 /с.

Подставим выражение (2.4) в уравнение (2.5) получим

$$k_x \frac{d^2 P}{dx} + \frac{k_z}{H^2} (P_0 - P) + \frac{\varphi \overline{\delta}}{(\overline{\delta} - 1)H l_{\pi}} \cdot q_{CHi} \left[\exp(-x) - \exp(-\overline{\delta}x) \right] = 0, \qquad (2.6)$$

где $\overline{\delta}$ – отношение коэффициента десорбции на коэффициент диффузии метана.

Принимаем следующие граничные условия для одной дегазационной скважины:

$$\frac{dP(0)}{dx} = 0; \quad P(x_1) = P_1; \quad P(\infty) = P_0, \tag{2.7}$$

где P_1 – начальное давление газа в дегазационной скважине, Π а.

 P_0 – начальное разрежение в дегазационной скважине, Па;

 x_1 – расстояние от забоя лавы до дегазационных скважин, м.

Дополнительно учитываем условия режима работы дегазационной скважины, расположенной на расстоянии (x) от забоя и создаваемое в ней разрежение P_1 . В уравнение можно добавлять любое неограниченное количество дегазационных скважин, но пока ограничимся одной дегазационной скважиной и одним сближенным угольным пластом. В этом случае решение уравнения (2.6) с граничными условиями (2.7) будет иметь вид

$$P(x) = P_0 + C_1 \exp\left(\sqrt{\frac{k_z}{k_x}}x / H\right) + C_2 \exp\left(\frac{-x}{x_{m1}}\right) + \exp\left(\frac{-\overline{\delta}x}{x_{m1}}\right), \tag{2.8}$$

где C_1 и C_2 – постоянные интегрирования;

 x_{m1} — расстояние от разрабатываемого до сближенного угольного пласта, м.

Математическое моделирование выполнялось на одном сближенном угольном пласте и одной дегазационной скважине со следующими исходными данными: расстояние от разрабатываемого до сближенного угольного пласта

 x_{m1} =50 м; мощность зоны плавных прогибов с разрывом сплошности горных пород H=10 м; расстояние от забоя лавы до забоя дегазационной скважины x =30 м; коэффициенты проницаемости горных пород $k_z = k_x = 1,2 \cdot 10^{-12}$ м²; разрежение в дегазационной скважине 6,67 кПа; зона влияния дегазационных скважин составляет 80 м.

В результате моделирования распределения давления метана в горном массиве при работающей одной дегазационной скважине установлено, что избыточное давление ($\Delta P = P - P_0$) поднялось до атмосферного (рисунок 2.3).

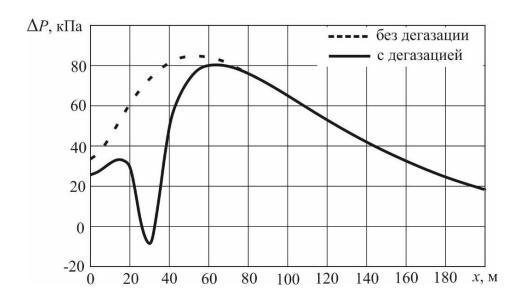


Рисунок 2.3 — Результаты моделирования распределения давления газа в горном массиве с низкой проницаемостью горных пород

Это связано с тем, что в радиусе работы дегазационных скважин образуются зоны с обратным током метановоздушной смеси из выработанного пространства [36]. Данная ситуация приводит к дополнительным подсосам воздуха, что негативно влияет на концентрацию каптируемого метана в газопроводе.

Как отмечается [38], концентрация метана в дегазационных трубопроводах должна быть не менее 25 %. В отдельных случаях допускается транспортирование газовоздушной смеси с содержанием метана менее 25 % при условии выполнения мероприятий, обеспечивающих взрывобезопасность. Поэтому подсосы воздуха через дегазационные скважины необходимо заранее определять путем расчетов на ПЭВМ.

Также можно наблюдать снижение давления газа вокруг дегазационной скважины в радиусе 10 м. Так как интенсивность газовыделения из сближенного пласта пропорциональна избыточному давлению, то их графики идентичны.

В то же время, при средней и высокой проницаемости угольно-породного массива, с помощью дегазации можно каптировать больший объем метановоздушной смеси.

Разработанная математическая модель позволяет выполнить оценку распределения давления газа в дегазационных скважинах и газовыделения в обрушенную зону выработанного пространства при дегазации сближенных угольных пластов и вмещающих пород.

2.2. Исследование динамики движения метана из сближенного угольного пласта в дегазационную скважину

Параметры бурения дегазационных скважин выбирают в интервале $15m_{\text{пл}} < l_{\text{н}} < 30m_{\text{пл}}$, где $l_{\text{н}}$ — наименьшее расстояние от места бурения скважины до почвы сближенного угольного пласта, на который бурят скважину. В случае отсутствия угольных пластов на данном интервале, то бурение скважин осуществляется до пересечения ближайшего подрабатываемого пласта или контакта с крепким породным слоем [38, с. 22].

Пробуренная дегазационная скважина, расположенная, находится в зоне разгрузки, которая характеризуется большой трещиноватостью. Поэтому в обоих случаях при создании разрежения в дегазационной скважине по трещинам и пустотам устремляется метан, а также воздух в зоне его утечек [10].

Для аналитического описания движения метана и воздуха к дегазационной скважине используем двучленный закон фильтрации [80]

$$\nabla P = -\frac{\eta}{k_{\rm B}} \dot{\mathbf{v}} - \frac{\beta \rho \mathbf{v}}{\sqrt{k_{\rm B}}} \dot{\mathbf{v}}, \qquad (2.9)$$

где ∇P – градиент давления (разрежение) в забое дегазационной скважины, к $\Pi a/m$;

η – динамическая вязкость метана (воздуха), Па·с;

 $k_{\rm B}$ — коэффициент проницаемости пород выработанного пространства, м²;

υ – вектор скорости фильтрации, м/с;

 β – эмпирическая константа турбулентности фильтрационного потока в пористой среде, 1.

Динамическая вязкость газов связана с кинематической вязкостью соотношением [78]

$$\eta = \rho v.$$
(2.10)

Тогда представим уравнение (2.9) в виде

$$\nabla P = -\left(\frac{v}{k_{\Phi}} + \frac{\beta v}{\sqrt{k_{\rm B}}}\right) \vec{\rho v}. \tag{2.11}$$

Плотность газов связана с давлением и температурой согласно уравнению состояния идеального газа [78]

$$P = \rho RT \,, \tag{2.12}$$

где R — универсальная газовая постоянная, Дж/ моль·K;

T – абсолютная температура, K.

Будем считать, что процессы фильтрации происходят в изотермических условиях и можно принять $T=T_0={
m const.}$ Тогда отношение давления к плотности также константа

$$\frac{P}{\rho} = \frac{P_0}{\rho_0},\tag{2.13}$$

где P_0 – давление метана при нормальных условиях, кПа;

 ρ_0 – плотность метана при нормальных условиях, кг/м³.

Преобразовав уравнение (2.11), согласно (2.13) получим

$$\nabla P = -\left(\frac{v}{k_{\phi}} + \frac{P_0}{P} \frac{\beta \rho v}{\rho_0 \sqrt{k_{\rm B}}}\right) \vec{\rho v}. \tag{2.14}$$

В проекции на направление фильтрационного потока вдоль дегазационной скважины уравнение (2.14) примет вид

$$-\frac{dP}{dx} = -\left(\frac{v}{k_{\phi}} + \frac{P_0}{P} \frac{\beta \rho v}{\rho_0 \sqrt{k_{\rm B}}}\right) \rho v. \qquad (2.15)$$

Массовая скорость метана или воздуха в стационарном режиме фильтрации величина постоянная [78]

$$\rho v = \rho_0 v_0. \tag{2.16}$$

где v_0 – скорость воздуха или метана при нормальных условиях, м/с.

Умножая левую и правую части равенства (2.16) на площадь поперечного сечения фильтрационного потока, получим

$$q_0 = \frac{\rho}{\rho_0} \upsilon S_{\phi}, \tag{2.17}$$

где q_0 – относительный массовый расход газов, приведенный к нормальным условиям, ${\rm M}^3/{\rm c}$;

 S_{ϕ} – площадь поперечного сечения фильтрационного потока, м².

Выражая массовую скорость фильтрационного потока через расход, вместо уравнения (2.15) получим

$$-\frac{dP}{dx} = -\left(\frac{\rho_0 v}{S_{\phi} k_{\rm B}} + \frac{P_0}{P} \frac{\beta \rho_0 q_0}{S_{\phi}^2 \sqrt{k_{\rm B}}}\right) q_0.$$
 (2.18)

Если принять давление газа в массиве равным некоторому среднему давлению $P = (P_0 + P_1)/2$, то отношение давлений также будет константой

$$\frac{P_0}{P} \approx \frac{2P_0}{P_0 + P_1} = const, \qquad (2.19)$$

где P_1 – давление газа в дегазационной скважине, к Π а.

Давление в дегазационной скважине определим через создаваемое BHC разрежение

$$P_1 = P_0 - (P_0 - P_1) = P_0 - h, (2.20)$$

где h – величина разрежения в скважине или создаваемая депрессия, к Π а.

Тогда отношение давлений (2.17) будет равно

$$\frac{P_0}{P} \approx \frac{2P_0}{P_0 - P_1} = \frac{P_0}{P_0 - h/2}.$$
 (2.21)

Принимая атмосферное давление $P_0 = 100$ кПа = 100 %, чтобы определить на сколько отличается величина разрежения от атмосферного давления. Так можно убедиться, что подход к осреднению функции (2.21) оправдан, если величина разрежения не превышает 25 кПа. В этом случае максимальная ошибка осреднения по формуле (2.21) составляет 17 %. В соответствии с [88, 106], максимальное разрежение в дегазационных скважинах находится в пределах 10 - 20 кПа, а минимальный не менее 7 - 13 кПа. В этом случае максимальная ошибка осреднения составляет всего 6 - 12 %.

Подставляя в уравнение (2.18) вместо функции (2.21) константу, получим

$$-\frac{dP}{dx} = \left(\frac{\rho_0 v}{S_{\phi} k_{\rm B}} + \frac{P_0}{P_0 - h/2} \cdot \frac{\beta \rho_0 q_0}{S_{\phi}^2 \sqrt{k_{\rm B}}}\right) q_0. \tag{2.22}$$

Интегрируя уравнение (2.22) по длине дегазационной скважины l, будем иметь

$$\Delta P = \left(\frac{\rho_0 v l}{S_{\phi} k_{\scriptscriptstyle B}} + \frac{P_0}{P_0 - h/2} \cdot \frac{\beta l \rho_0 q_0}{S_{\phi}^2 \sqrt{k_{\scriptscriptstyle B}}}\right) q_0. \tag{2.23}$$

Разность давлений в левой части формулы (2.23) состоит из величины создаваемого разрежения h и напора метана h_0 . Поэтому вместо (2.23) получим

$$h + h_0 = \left(\frac{\rho_0 \nu l}{S_{\phi} k_{\phi}} + \frac{P_0}{P_0 - h/2} \cdot \frac{\beta l \rho_0 q_0}{S_{\phi}^2 \sqrt{k_{\phi}}}\right) q_0, \qquad (2.24)$$

где h_0 – напор, создаваемый метаном в дегазационной скважине, к Π а.

Поскольку заранее определить проницаемость пород выработанного пространства, а также площадь раскрытия трещин и пустот не представляется возможным, тогда примем за эмпирические константы их аэродинамические сопротивления

$$R_{\text{\tiny T.C}} = \frac{\rho_0 \nu l}{S_{\phi} k_{\text{\tiny B}}}; \qquad R_{\text{\tiny T.C}} = \frac{\beta \rho_0 l}{S_{\phi}^2 \sqrt{k_{\text{\tiny B}}}},$$
 (2.25)

где $R_{\text{п.с}}$ – ламинарная составляющая аэродинамического сопротивления пород массива выработанного пространства, к $\Pi a \cdot c/m^3$;

 $R_{\text{т.с}}$ — турбулентная составляющая аэродинамического сопротивления пород массива выработанного пространства, к $\Pi a \cdot c^2 / m^6$.

Подставим константы $R_{\text{л.c}}$ и $R_{\text{т.c}}$ в уравнение (2.24), то получим уравнение в следующем виде

$$h + h_0 = \left(R_{\text{\tiny T.c}} q_0 + \frac{R_{\text{\tiny T.c}}}{1 - h / 2P_0} q_0^2 \right). \tag{2.26}$$

Анализ полученной зависимости (2.26) показывает, что она почти ничем не отличается от уравнения движения газов при двучленном законе сопротивления.

Разрешим уравнение (2.23) относительно расхода метановоздушной смеси

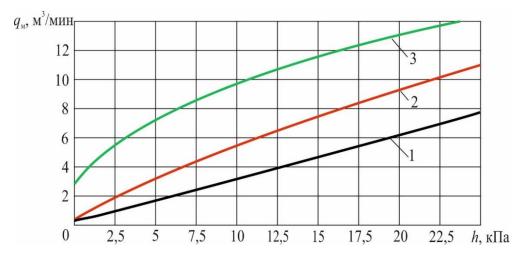
$$q_0 = \frac{-R_{\text{\tiny J.C}} + \sqrt{R_{\text{\tiny J.C}}^2 + 4R_{\text{\tiny T.C}}(h + h_0) / (1 - h / 2P_0)}}{2R_{\text{\tiny T}i} / (1 - h / 2P_0)}.$$
 (2.27)

Полученная зависимость (2.27) расхода смеси газов (метана и воздуха) от разрежения и аэродинамических сопротивлений неудобна для анализа режима работы дегазационных скважин (турбулентного или ламинарного режима фильтрации), поэтому умножая числитель и знаменатель формулы (2.27) на сумму величин, стоящих в числителе, то есть дополняя числитель до разности квадратов, получим

$$q_{0} = \frac{\left[-R_{\text{\tiny J.c}} + \sqrt{R_{\text{\tiny J.c}}^{2} + 4R_{\text{\tiny T.c}}(h + h_{0}) / \left(\frac{1-h}{2P_{0}}\right)}\right] \left[R_{\text{\tiny J.c}} + \sqrt{R_{\text{\tiny J.c}}^{2} + 4R_{\text{\tiny T.c}}(h + h_{0}) / \left(\frac{1-h}{2P_{0}}\right)}\right]} \cdot (2.28)$$

$$2R_{\text{\tiny T.c}} \left[R_{\text{\tiny J.c}} + \sqrt{R_{\text{\tiny J.c}}^{2} + 4R_{\text{\tiny T.c}}(h - h_{0})} / \left(\frac{1-h}{2P_{0}}\right)\right] / \left(\frac{1-h}{2P_{0}}\right)$$

Из полученной зависимости следует, что числитель представляет собой разность квадратов. Это позволяет получить удобную для расчета формулу


$$q_0 = \frac{2(h+h_0)}{R_{\text{n.c}} + \sqrt{R_{\text{n.c}}^2 + 4R_{\text{r.c}}(h+h_0)/(1-h/2P_0)}}.$$
 (2.29)

Полученная формула (2.29) учитывает одновременно турбулентный $(R_{\pi i}=0)$, ламинарный $(R_{\pi i}=0)$, а также промежуточный режимы фильтрации.

При работе группы дегазационных скважин будем считать, что в их окрестности те же аэродинамические сопротивления и создаваемые разрежения. Тогда общее поступление метана $q_{\scriptscriptstyle M}$ в группу скважин (n) на выемочном участке будет иметь вид

$$q_{\rm M} = \frac{2n(h+h_0)}{R_{\rm \pi,c} + \sqrt{R_{\rm \pi,c}^2 + 4R_{\rm \tau,c}(h+h_0)/(1-h/2P_0)}}.$$
 (2.30)

На рисунке 2.4 представлены результаты расчета по формуле (2.30) расхода смеси газа через одну дегазационную скважину.

1 – ламинарный режим; 2 – промежуточный режим; 3 – турбулентный режим

Рисунок 2.4 – Зависимость расхода метана через дегазационную скважину от создаваемого разрежения при различных режимах фильтрации

При этом приняты следующие исходные данные: n=1; $h_0=1,0$ кПа; $P_0=100$ кПа. Остальные данные принимались равными: $R_{\rm n.c}=0$; 100; 200 кПа·с/м³; и $R_{\rm r.c}=400$; 200; 0 кПа·с²/м⁶ – при турбулентном, промежуточном и ламинарном режимах фильтрации соответственно.

Из анализа полученных данных следует, что зависимость расхода метана от создаваемого разрежения даже при турбулентном режиме фильтрации практически линейная функция, начиная с h > 5,0 кПа.

Кроме метана в дегазационные скважины будет поступать воздух из-за негерметичности их устьев. В этом случае формула для расчета расхода воздуха через группу дегазационных скважин на выемочном участке практически идентична формуле (2.30). Единственное, что нужно учесть это $h_0 = 0$ и считать аэродинамические сопротивления в устье дегазационной скважины отличными от сопротивлений в зоне фильтрации. Тогда, будем иметь

$$q_{\text{\tiny B.J,I}} = \frac{2nh}{R_{\text{\tiny J.B}} + \sqrt{R_{\text{\tiny J.B}}^2 + 4R_{\text{\tiny T.B}}h / (1 - h / 2P_0)}},$$
 (2.31)

где $q_{\text{в.д}}$ – суммарный расход воздуха через группу дегазационных скважин, м³/с;

 $R_{\text{л.в}}$ — ламинарное аэродинамическое сопротивление дегазационной скважины подсосам воздуха, к $\Pi a \cdot c/m^3$;

 $R_{\text{т.в}}$ – турбулентное аэродинамическое сопротивление дегазационной скважины подсосам воздуха, к $\Pi a \cdot c^2/M^6$.

На рисунке 2.5 представлены результаты расчета расходов метана и воздуха через одну дегазационную скважину по формулам (2.30) и (2.31). При выполнении расчетов использованы следующие исходные данные: n = 1; $h_0 = 1,0$ кПа; $P_0 = 100$ кПа; $R_{\text{т.c}} = 200$ кПа·с²/м⁶; $R_{\text{л.c}} = R_{\text{л.в}} = 100$ кПа·с/м³; $R_{\text{т.в}} = 150$ кПа·с²/м⁶.

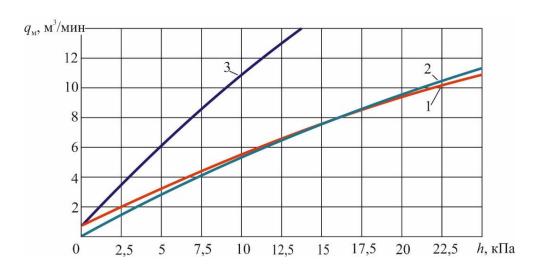


Рисунок 2.5 — Зависимость расходов через дегазационную скважину метана (1), воздуха (2) и метановоздушной смеси (3) от создаваемого разрежения при промежуточном режиме фильтрации

Из сравнения кривых 1 и 2 на рисунке 2.5 следует, что расход воздуха при малом разрежении вначале меньше расхода метана, а затем увеличивается несмотря на то, что ламинарные аэродинамические сопротивления приняты одинаковыми, а турбулентное аэродинамические сопротивление для воздуха несколько меньше.

Объемную долю метана в дегазационной скважине определим по формуле

$$C = \frac{C_{\text{\tiny HAM}} q_{\text{\tiny M}}}{q_{\text{\tiny M}} + q_{\text{\tiny B}}},\tag{2.32}$$

где $C_{\text{нач}}$ – начальная объемная доля метана в месте его отбора, %.

На рисунке 2.6 приведены результаты расчета объемной доли метана в дегазационной скважине при тех же исходных данных.

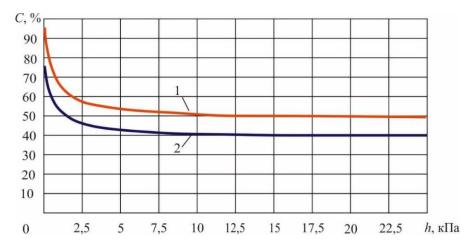


Рисунок 2.6 – Зависимость объемной доли метана в дегазационной скважине от создаваемого разрежения при дегазации сближенного пласта (1) и выработанного пространства (2)

При расчетах в качестве примера начальное содержание метана из сближенного угольного пласта принимать равным $C_{\text{нач}} = 100$ %, а в выработанном пространстве $C_{\text{нач}} = 80$ %. Из анализа полученных данных следует, что с увеличением разрежения в дегазационной скважине концентрация метана вначале резко падает, а затем стабилизируется на одном уровне.

Достоверность результатов теоретического исследования устанавливались путем сравнения результатов с ранее проведенными экспериментальными данными.

Используя двучленный закон аэродинамического сопротивления при фильтрации метана через угольно-породный массив и движения метановоздушной смеси в газопроводе, получим [78]

$$-\frac{dP}{dx} = \left(\frac{64}{\text{Re}} + \lambda_{\text{\tiny T}}\right) \frac{\rho v^2}{2d}, \qquad (2.33)$$

где Re – число Рейнольдса;

 $\lambda_{\rm T}$ – коэффициент турбулентного трения, 1.

Число Рейнольдса определяем по формуле

$$Re = \frac{vd}{v}, \qquad (2.34)$$

где d – диаметр газопровода, м.

Подставляем выражение (2.34) в уравнение (2.33), тогда

$$-\frac{dP}{dx} = \left(\frac{64v}{vd} + \lambda_{\rm T}\right) \frac{\rho v^2}{2d}.$$
 (2.35)

Так как разрежение в газопроводе больше, чем в дегазационной скважине, особенно вблизи ВНС [10], то здесь также справедливо как уравнение состояния, так и уравнение неразрывности.

С учетом этих уравнений вместо (2.35) будем иметь

$$-\frac{dP}{dx} = \left(\frac{32v}{d^2} + \frac{P_0}{P} \frac{\lambda_{\text{T}} \rho v}{\rho_0 2d}\right) \rho v. \qquad (2.36)$$

Выразим в уравнении (2.36) скорости через расходы метановоздушной смеси в газопроводе и получим

$$-\frac{dP}{dx} = \frac{32\rho_0 v}{d^2 S_{\pi}} Q_0 + \frac{P_0}{P} \frac{\lambda_{\tau} \rho_0}{2dS_{\pi}^2} Q_0^2, \qquad (2.37)$$

где Q_0 – расход метановоздушной смеси в газопроводе, приведенный к нормальным условиям $Q_0 = \rho v S_n / \rho_0$, м³/с;

 $S_{\rm d}$ – площадь поперечного сечения дегазационного газопровода, м².

Подставляя в уравнение (2.37) диаметр газопровода вместо его площади поперечного сечения получим

$$-\frac{dP}{dx} = \frac{128\rho_0 \nu}{\pi d^4} Q_0 + \frac{P_0}{P} \frac{8\lambda_{\rm T} \rho_0}{\pi^2 d^5} Q_0^2. \tag{2.38}$$

Анализ правой части уравнения (2.38) показывает, что множители перед расходами метановоздушной смеси в газопроводе представляют собой удельные аэродинамические сопротивления (ламинарное и турбулентное) на 1,0 м длины газопровода. Поэтому примем:

$$r_{\text{\tiny II}} = \frac{128\rho_0 v}{\pi d^4}; \ r_{\text{\tiny I}} = \frac{8\lambda_{\text{\tiny T}}\rho_0}{\pi^2 d^5},$$
 (2.39)

где $r_{\text{п}}$ – удельное ламинарное аэродинамическое сопротивление, $k\mu$ /м;

 $r_{\rm T}$ — удельное турбулентное аэродинамическое сопротивление, $k\mu/{\rm M}$.

Тогда уравнение (2.38) примет вид

$$-\frac{dP}{dx} = r_{\pi}Q_0 + \frac{P_0}{P}r_{\tau}Q_0^2. \tag{2.40}$$

Будем искать решение уравнения (2.40), разделяя переменные

$$\frac{PdP}{r_{\rm I}Q_0P + r_{\rm T}Q_0^2P_0} = -dx. \tag{2.41}$$

Преобразуем уравнение (2.41) к виду

$$\frac{\left[(r_{\rm n}Q_0P + r_{\rm r}Q_0^2P_0) - r_{\rm r}Q_0^2P_0 \right] dP}{r_{\rm n}Q_0P + r_{\rm r}Q_0^2P_0} = -r_{\rm n}Q_0dx. \tag{2.42}$$

Интегрируя уравнение (2.42), получим

$$P - \frac{r_{\rm T}Q_0^2 P_0}{r_{\rm T}Q_0} \ln(r_{\rm T}Q_0 P + r_{\rm T}Q_0^2 P_0) = -r_{\rm T}Q_0 x + A.$$
 (2.43)

Константа интегрирования (A), получается из условия, что при x=0 давление на входе в газопровод $P=P_1$. Отсюда согласно (2.43) будем иметь

$$A = P_1 - \frac{r_{\rm T} Q_0^2 P_0}{r_{\rm T} Q_0} \ln(r_{\rm T} Q_0 P_1 + r_{\rm T} Q_0^2 P_0). \tag{2.44}$$

Подставляя выражение (2.44) для константы интегрирования вместо (2.43), окончательно получим

$$P_{1} - P + \frac{r_{\text{T}}Q_{0}^{2}P_{0}}{r_{\text{T}}Q_{0}} \ln \frac{r_{\text{T}}Q_{0}P_{1} + r_{\text{T}}Q_{0}^{2}P_{0}}{r_{\text{T}}Q_{0}P + r_{\text{T}}Q_{0}^{2}P_{0}} = r_{\text{T}}Q_{0}x.$$
 (2.45)

Приведенное решение (2.45) уравнения (2.38) является трансцендентным и не разрешается ни относительно давления, ни относительно расхода. Поэтому будем искать приближенное решение уравнения (2.38), приняв вначале $r_{\pi} = 0$. Решение уравнения (2.38) имеет вид

$$P_1^2 - P^2 = 2P_0 R_{\rm T} O_0^2. {(2.46)}$$

При длине дегазационного газопровода x = L будем иметь, $R_{\rm T} = r_{\rm T}L$. Данной зависимостью, обычно пользуются при расчетах дегазационных сетей [80, 88, 112],

а зависимость (2.46) описывает только турбулентный режим течения газа и неудобна тем, что содержит в левой части разность квадратов давлений. Для упрощения зависимости (2.46) представим ее в виде

$$P_{\rm l} - P = \frac{2P_0 R_{\rm T}}{P_{\rm l} + P} Q_0^2 \,. \tag{2.47}$$

Так как разность давлений $(P_1 - P)$ есть депрессия или разрежение h, то разрешая уравнение (2.47) относительно расхода метановоздушной смеси, получим

$$Q_0 = \sqrt{\frac{(2P_1 - h)h}{2R_{\rm r}P_0}},$$
(2.48)

или

$$Q_0 = \sqrt{\frac{h}{k_1 R_{\scriptscriptstyle T}}}. (2.49)$$

Результаты экспериментальных расчетов показали, что как с учетом изменения разрежения, так и при постоянном множителе перед разрежением отклонения предлагаемой формулы (2.48) от формулы (2.49) не превышают 9 % при коэффициенте сжимаемости газов $k_1 = 1,15$, в диапазоне разрежения 0...60 кПа (рисунок 2.7).

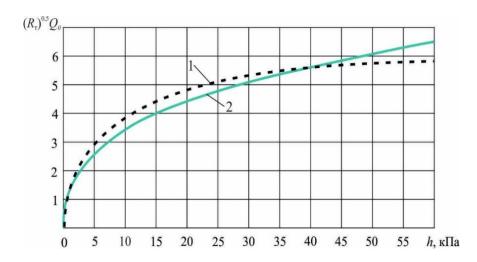


Рисунок 2.7 – Результаты сравнения фактической (1) и приближенной (2) зависимости расхода метановоздушной смеси в газопроводе от разрежения

Данная погрешность будет уменьшаться, если учитывать ламинарный и промежуточный режимы. В этом случае уравнение (2.40) можно представить в виде

$$-\frac{dP}{dx} = r_{\rm I}Q_0 + k_1 r_{\rm T}Q_0^2. \tag{2.50}$$

Решение уравнения (2.50) ничем не отличается от уравнений при двучленном законе сопротивления и имеет общий вид

$$h = R_{\rm n}Q_0 + k_1 R_{\rm r}Q_0^2. \tag{2.51}$$

Входящая в аэродинамические сопротивления плотность газов $\rho_{\rm r}$ должна пересчитываться для каждого участка газопровода с учетом объемной доли метана, а именно

$$\rho_{\Gamma} = \rho_{\mathrm{B}} - (\rho_{\mathrm{B}} - \rho_0)C_{\Gamma}, \qquad (2.52)$$

где $\rho_{\scriptscriptstyle B}$ – плотность воздуха при нормальных условиях, $\rho_{\scriptscriptstyle B}{=}1,2$ кг/м³;

 C_{Γ} – объемная доля метана на участке газопровода, %.

При учете подсосов воздуха в газопроводе можно пользоваться формулой (2.49), только в нее необходимо ввести местное сопротивление для турбулентного потока с, тогда

$$\varsigma = \frac{\lambda_{\rm T} L}{d} \,. \tag{2.53}$$

Для ламинарного потока считать L/d = 1. Площадь зазора в газопроводе при подсосе воздуха определим по формуле

$$S_{III} = \pi d\delta \,, \tag{2.54}$$

где δ – величина зазора (разрыва) в газопроводе при подсосе воздуха, м.

В этом случае аэродинамические сопротивления для зазоров (разрывов) газопровода определяют по формуле

$$R_{\scriptscriptstyle \Pi} = \frac{32\rho_{\scriptscriptstyle B}V}{\pi d\delta}; R_{\scriptscriptstyle T} = \frac{\varsigma\rho_{\scriptscriptstyle B}}{2(\pi d\delta)^2}. \tag{2.55}$$

Полученная аналитическая зависимость расхода метановоздушной смеси в дегазационных скважинах от создаваемого разрежения справедлива как при отсутствии скважин, так и их работе в любом количестве.

2.3. Математическая модель переходных газодинамических процессов в выемочном участке при изменении параметров проветривания и дегазации

Учитывая то, что из выработанного пространства выделяется до 90 % общего метановыделения выемочного участка, остановка дегазации может существенно изменить в нем газовую обстановку и вызвать образование опасных скоплений метана [6, 7, 23, 27, 40, 50, 65, 90, 100].

Проведенные ранее другими учеными исследования [14, 20, 22, 23, 40, 47, 70, 92, 108, 112, 113, 131, 132], связанные с процессами движения метановоздушной смеси в выработанном пространстве при изменении параметров работы систем дегазации показывают, что нарастание метановыделения происходит равномерно в течении 6,0 ч, а затем стабилизируется на уровне, определяемом горногеологическими условиями и нагрузкой на очистной забой.

Исследования закономерностей метановыделения в горные выработки показали [4, 27, 55, 91], что интенсивность газовыделения увеличивается при разгрузке дегазируемого пласта от давления горных пород, т.е. в результате подработки или надработки угольного пласта сближенными пластами.

Для описания переходных газодинамических процессов в выемочном участке представим лаву и активно проветриваемую зону выработанного пространства как

две параллельные выработки, в которых происходит конвективно-диффузионный перенос примеси с равномерно распределенными источниками газовыделения из пласта в лаву и из сближенных угольных пластов в выработанное пространство, которая предварительно фильтруются через породные толщи.

Предположим, что в части вентиляционного штрека, примыкающей к активно проветриваемой зоне выработанного пространства, происходит мгновенное перемещение метана, а в остальной части штрека — его диффузия в общем потоке воздуха.

Исходное уравнение, описывающее переходный газодинамический процесс в лаве, имеет вид [1]

$$\frac{\partial C_{\Pi}}{\partial t} + \frac{Q_{\Pi}}{S_{\Pi}} \cdot \frac{\partial C_{\Pi}}{\partial z} = D_{\Pi} \frac{\partial^{2} C_{\Pi}}{\partial^{2} z} + \frac{q_{\Pi\Pi}}{S_{\Pi} l_{\Pi}}, \qquad (2.56)$$

где C_{π} – объемная доля метана в лаве, %;

 $q_{\text{пл}}$ – дебит метана из разрабатываемого пласта, м³/с;

 $Q_{\text{п}}$ – расход воздуха в лаве, м³/c;

 $D_{\text{п}}$ – коэффициент диффузии метана в лаве, м²/с;

 S_{π} – площадь поперечного сечения лавы, м²;

t – продолжительность переходного газодинамического процесса, с;

 z – координата, отсчитываемая от откаточного штрека по направлению движения вентиляционной струи воздуха.

Считаем, что концентрация метана на выходе в лаву – величина постоянная, тогда

$$C_{\pi}(0, t) = C_{\pi 0}.$$
 (2.57)

Полагая, что на противоположном конце лавы ($z \rightarrow \infty$)

$$\left. \frac{\partial C_{\pi}}{\partial z} \right|_{z \to \infty} = M, \tag{2.58}$$

где M — константа.

Тогда из решения уравнения (2.56) с граничными условиями (2.57) и (2.58) при $\partial C_{\pi}/\partial t=0$ и $Q_{\pi}=Q_{\pi 0}$, что соответствует нормальному режиму проветривания выемочного участка, получим начальное распределение концентрации метана в лаве

$$C_{\pi}(z,0) = C_{\pi,0} + \frac{q_{\pi\pi}}{Q_{\pi,0}} \cdot \frac{z}{l_{\pi}}.$$
 (2.59)

Для измененного скачком режима работы вентиляции, когда расход воздуха в лаве $Q_{\pi} = Q_{\pi,1}$, решение уравнения (2.56) с начальными и граничными условиями (2.57) – (2.59) может быть найдено с помощью подстановки [78]

$$C_{\pi}(z,t) = C_{\pi}(z,t) \exp\left(\frac{Q_{\pi,1}z}{2S_{\pi}D_{\pi}} - \frac{Q_{\pi,1}^{2}t}{4S_{\pi}^{2}D_{\pi}}\right). \tag{2.60}$$

и преобразовано к виду

$$C_{\pi}(z,t) = C_{\pi,0} + \frac{q_{\pi\pi}}{Q_{\pi,1}} \cdot \frac{z}{l_{\pi}} - \frac{q_{\pi\pi}}{Q_{\pi,1}} \left(1 - \frac{Q_{\pi,1}}{Q_{\pi,0}}\right) \frac{z}{l_{\pi}} \times \left[\exp\left(\frac{Q_{\pi,1}z}{S_{\pi}Z}\right) \cdot \left(\frac{Q_{\pi,1}t}{S_{\pi}Z} + 1\right) \operatorname{erfc}\left(\frac{Q_{\pi,1}t}{S_{\pi}Z} + 1\right) - \left(\frac{Q_{\pi,1}t}{S_{\pi}Z} - 1\right) \operatorname{erfc}\left(\frac{Q_{\pi,1}t}{S_{\pi}Z} - 1\right)\right].$$
(2.61)

Решение (2.61) описывает переходный газодинамический процесс в лаве, вызванный нарушением режима работы вентиляции. Как видно из решения, самые существенные изменения концентрации метана имеют место на выходе из лавы при

 $z = l_{\pi}$. Характер данных изменений раскрывает формула, полученная из решения (2.61) и выраженная в безразмерном виде

$$\zeta_{\pi} = 1 - \frac{1}{2} \left[\exp(\delta_{\pi}) (\tau_{\pi} + 1) \operatorname{erfc} \left(\frac{\tau_{\pi} + 1}{2\sqrt{\tau_{\pi} / \delta_{\pi}}} \right) - (\tau_{\pi} - 1) \operatorname{erfc} \left(\frac{\tau_{\pi} - 1}{2\sqrt{\tau_{\pi} / \delta_{\pi}}} \right) \right], \quad (2.62)$$

где $\zeta_{\text{л}}$ – безразмерный параметр $\zeta_{\text{л}} = \frac{C_{\text{л}}(l_{\text{л}},t) - C_{\text{л}}(l_{\text{л}},0)}{C_{\text{л}}(l_{\text{л}},\infty) - C_{\text{л}}(l_{\text{л}},0)}$;

$$au_{\pi}$$
 – критерий гомохронности, $au_{\pi} = \frac{Q_{\pi,1}t}{S_{\pi}l_{\pi}}$;

 $\delta_{\scriptscriptstyle \rm J}$ — параметр, представляющий произведение числа Пекле ${\rm Pe} = Q_{\scriptscriptstyle \rm II,1}/S_{\scriptscriptstyle \rm J}D_{\scriptscriptstyle \rm J}$ на геометрический критерий $l_{\scriptscriptstyle \rm J}/m_{\scriptscriptstyle \rm III}$, 1.

По формуле (2.62) построены кривые роста относительной концентрации метана на выходе из лавы в зависимости от критерия гомохронности τ_{π} и параметра δ_{π} (рисунок 2.8).

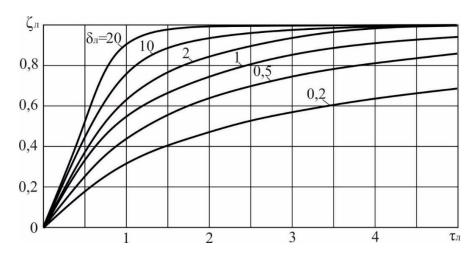


Рисунок 2.8 — Зависимость относительной концентрации метана на выходе из лавы в утечках воздуха от критерия гомохронности $\tau_{\scriptscriptstyle \Pi}$ и параметра $\delta_{\scriptscriptstyle \Pi}$

Если газовыделение из разрабатываемого угольного пласта происходит прямо в поток воздуха, то метан из сближенных угольных пластов, прежде чем смешаться с утечками воздуха, должен пройти непроветриваемую разгруженную зону выработанного пространства. Уравнения движения (фильтрации) и неразрывности одномерного потока метана в толще горных пород имеют вид [30]:

$$V = -\frac{k}{\mu} \cdot \frac{\partial P}{\partial y}; \tag{2.63}$$

$$\frac{\partial(\rho\sigma)}{\partial t} + \frac{\partial(\rho V)}{\partial y} = 0, \tag{2.64}$$

где V – скорость фильтрации, м/с;

μ – динамическая вязкость газа, Па·с;

k – коэффициент проницаемости горных пород, M^2 ;

σ – коэффициент пористости породы, 1;

y – координата отсчитываемая от сближенного угольного пласта в сторону разрабатываемого угольного пласта, 1.

Считая, что для метана в разгруженной зоне справедливо уравнение состояния идеального газа

$$P = \rho RT. \tag{2.65}$$

Тогда вместо уравнения (2.64) можно записать

$$\frac{\partial}{\partial t} \left(\frac{\sigma}{RT} \rho \right) + \frac{\partial (\rho V)}{\partial y} = 0. \tag{2.66}$$

Так как динамическая вязкость (μ) связана с кинематической (v) соотношением $\mu = \rho v$, подставим уравнение (2.66) вместо градиента давления из уравнения (2.63), будем иметь

$$\frac{\partial(\rho V)}{\partial t} = f \frac{\partial(\rho V)}{\partial y^2},\tag{2.67}$$

где f – коэффициент пьезопроводности массива пород, принимаемый за константу,

$$f = \frac{KPT}{v\sigma}$$
.

Умножая на площадь фильтрации S_{ϕ} и разделяя на плотность метана при нормальных условиях левую и правую части уравнения (2.67), получим

$$\frac{\partial q_{\rm cn}}{\partial t} = f \frac{\partial^2 q_{\rm cn}}{\partial y^2} \,, \tag{2.68}$$

где $q_{\rm cn}$ – дебит метана из сближенных угольных пластов $q_{\rm cn} = \frac{\rho}{\rho_0} V S_{\rm \phi}$, м³/с.

Предположим, что до изменения параметров работы системы дегазации, дебет метана на любом расстоянии от сближенного угольного пласта равен

$$q_{\rm cn}(y,0) = q_{\rm cn.0}. \tag{2.69}$$

После изменения параметров работы дегазации в выработанное пространство из сближенного угольного пласта выделяется метан с дебитом

$$q_{\rm cn}(0,t) = q_{\rm cn.1}. \tag{2.70}$$

На противоположном конце зоны фильтрации ($y \to \infty$) примем

$$\left. \frac{\partial q_{\rm cri}}{\partial y} \right|_{y \to \infty} = 0. \tag{2.71}$$

Решение уравнения (2.68) с начальными и граничными условиями (2.69) – (2.71) представим в виде

$$q_{\text{cn}}(y,t) = q_{\text{cn}1} - (q_{\text{cn}1} - q_{\text{cn}0}) \operatorname{erf}\left(\frac{y}{2\sqrt{f \cdot t}}\right), \tag{2.72}$$

Уравнение (2.72) позволяет определить дебит метана, поступающий из сближенного угольного пласта в активно проветриваемую зону выработанного пространства, на расстоянии до разрабатываемого угольного пласта $y = l_{cn}$ и в любое время с момента изменения параметров работы дегазации.

Исходное уравнение, описывающее переходный газодинамический процесс в активно проветриваемой зоне выработанного пространства имеет вид [1]

$$\frac{\partial C_{\rm B}}{\partial t} + \frac{Q_{\rm B}}{S_{\rm B}} \frac{\partial C_{\rm B}}{\partial z} = D_{\rm B} \frac{\partial^2 C_{\rm B}}{\partial z^2} + \frac{q_{\rm cri}(l_{\rm cri}, t)}{S_{\rm B}l_{\rm T}},\tag{2.73}$$

где $C_{\rm B}$ – объемная доля метана в выработанном пространстве, %;

 $Q_{\rm B}$ — расход воздуха в утечках через активно проветриваемую зону выработанного пространства, м 3 /с;

 $D_{\rm B}$ – коэффициент диффузии метана в выработанном пространстве, м²/с;

 $S_{\scriptscriptstyle \rm B}$ — площадь поперечного сечения активно-проветриваемой зоны, м².

Считаем, что в выработанное пространство поступает постоянная величина объемной доли метана

$$C_{\rm B}(0,t) = C_{\rm B0}$$
. (2.74)

На противоположном конце ($z \rightarrow \infty$) принимаем

$$\left. \frac{\partial C_{\rm B}}{\partial z} \right|_{z \to \infty} = M. \tag{2.75}$$

Тогда из решения уравнения (2.73) с граничными условиями (2.74) и (2.75) при $\frac{\partial C_{\rm B}}{\partial z} = 0$, $q_{\rm cn}(l_{\rm cn},0) = q_{\rm cn0}$ и $Q_{\rm B} = Q_{\rm B0}$, что соответствует нормальному режиму дегазации и проветривания, получим начальное распределение концентрации метана в активно проветриваемой зоне выработанного пространства

$$C_{\rm B}(z,0) = C_{\rm B0} + \frac{q_{\rm cn0}}{O_{\rm B0}} \frac{z}{l_{\rm cn}}.$$
 (2.76)

При отключении системы дегазации и изменении режима проветривания, когда расход воздуха в утечках воздуха $Q_{\rm B} = Q_{\rm B1}$, решение уравнения (2.73) с граничными и начальными условиями (2.74) — (2.76) определим с помощью подстановки (2.60). Полученное таким образом решение, после ряда преобразований примет вид

$$C_{B}(z,t) = C_{B0} + \frac{q_{\text{cn1}}}{Q_{B1}} \cdot \frac{z}{l_{\pi}} - \left(\frac{q_{\text{cn1}}}{Q_{B1}} - \frac{q_{\text{cn0}}}{Q_{B0}}\right) \frac{z}{l_{\pi}} \times \frac{1}{2} \left[1 - \frac{Q_{B1}t}{S_{B}z} \operatorname{erfc}\left(\frac{Q_{B1}t}{S_{B}z} - 1\right) + \exp\left(\frac{Q_{B1}t}{S_{B}D_{B}}\right) \operatorname{erfc}\left(\frac{Q_{B1}t}{S_{B}z} + 1\right) - \frac{q_{\text{cn1}} - q_{\text{cn0}}}{S_{B}l_{\pi}} \times \frac{1}{2} \int_{0}^{t} \operatorname{erfc}\left(\frac{l_{\text{cn}}}{2\sqrt{f \cdot \theta}}\right) \cdot \left[\operatorname{erfc}\left(\frac{Q_{B1}(t - \theta)}{S_{B}z} - 1\right) - \exp\left(\frac{Q_{B1}z}{S_{B}D_{B}}\right) \operatorname{erfc}\left(\frac{Q_{B1}(t - \theta)}{S_{B}z} + 1\right) d\theta. \right] d\theta.$$

Решение уравнения (2.77) описывает переходный газодинамический процесс в активно-проветриваемой зоне выработанного пространства при изменении параметров проветривания и дегазации выемочного участка.

Для анализа представим формулу (2.77) при $z = l_{\scriptscriptstyle \rm I}$ в безразмерном виде

$$\begin{split} \zeta_{\mathrm{B}} &= 1 - \frac{1}{2} \Bigg[\exp(\delta_{\mathrm{B}}) (\tau_{\mathrm{B}} + 1) \operatorname{erfc} \left(\frac{\tau_{\mathrm{B}} + 1}{2\sqrt{\tau_{\mathrm{B}}/\delta_{\mathrm{B}}}} \right) - (\tau_{\mathrm{B}} - 1) \operatorname{erfc} \left(\frac{\tau_{\mathrm{B}} - 1}{2\sqrt{\tau_{\mathrm{B}}/\delta_{\mathrm{B}}}} \right) \Bigg] - \\ &- \frac{K_{q} - 1}{K_{q} - K_{Q_{\mathrm{B}}}} \cdot \frac{\tau_{\mathrm{B}}}{2} \int_{0}^{1} \operatorname{erf} \left(\frac{\lambda}{2\sqrt{\overline{\Theta}}\tau_{\mathrm{B}}/\delta_{\mathrm{B}}} \right) \times \\ &\times \Bigg[\operatorname{erfc} \left(\frac{\tau_{\mathrm{B}} (1 - \overline{\Theta}) - 1}{2\sqrt{\tau_{\mathrm{B}} (1 - \overline{\Theta})/\delta_{\mathrm{B}}}} \right) - \exp(\delta_{\mathrm{B}}) \operatorname{erfc} \left(\frac{\tau_{\mathrm{B}} (1 - \overline{\Theta}) + 1}{2\sqrt{\tau_{\mathrm{B}} (1 - \overline{\Theta})/\delta_{\mathrm{B}}}} \right) \Bigg] d\overline{\Theta}. \end{split}$$

$$\Gamma \text{Де } \zeta_{\mathrm{B}} &= \frac{C_{\mathrm{B}} (l_{\mathrm{B}}, t) - C_{\mathrm{B}} (l_{\mathrm{B}}, 0)}{C_{\mathrm{B}} (l_{\mathrm{B}}, 0)}; \ \tau_{\mathrm{B}} &= \frac{Q_{\mathrm{B}} \cdot t}{S_{\mathrm{B}} l_{\mathrm{B}}}; \ \delta_{\mathrm{B}} = \frac{Q_{\mathrm{B}} l_{\mathrm{B}}}{S_{\mathrm{B}} D_{\mathrm{B}}}; \ K_{Q_{\mathrm{B}}} &= \frac{Q_{\mathrm{B}}}{Q_{\mathrm{B}} 0}; \ K_{q} = \frac{q_{\mathrm{cri}}}{q_{\mathrm{cri}}}; \overline{\Theta} = \frac{\Theta}{t}. \end{split}$$

На рисунке 2.9 для значения $\delta_{\rm B}$ =2 построены по формуле (2.78) кривые роста относительной концентрации метана на выходе из выработанного пространства при изменении параметров работы системы дегазации ($K_{Q\rm B}=1$) в зависимости от

критерия гомохронности $\tau_{\scriptscriptstyle B}$ и параметра λ , характеризующего физические свойства

выработанного пространства.

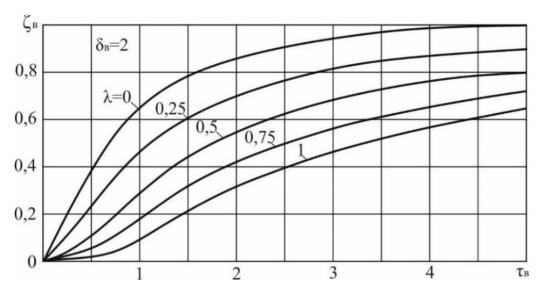


Рисунок 2.9 — Зависимость относительной концентрации метана в утечках воздуха выработанного пространства от критерия гомохронности $\tau_{\scriptscriptstyle B}$ и параметра λ

Сравнение кривых (рисунок 2.9) показывает, что с увеличением расстояния от разрабатываемого пласта до сближенного угольного пласта переходный газодинамический процесс не только замедляется, но и становится инерционным.

Параметр, характеризующий физические свойства выработанного пространства λ определяем по формуле

$$\lambda = \frac{l_{\text{cn}}}{l_{\text{n}}} \sqrt{\frac{D_{\text{B}}}{f}} . \tag{2.79}$$

Если ширина зоны активных утечек превышает 50 м, то концентрация метана в вентиляционном штреке на отрезке $x \le x_0$ может быть определена по формуле

$$C_{\text{III}}(x,t) = \frac{C_{\text{I}}(l_{\text{I}},t)Q_{\text{II}} + C_{\text{B}}(l_{\text{I}},t)Q_{\text{BI}}\frac{x}{x_{0}}}{Q_{\text{II}} + Q_{\text{BI}}\frac{x}{x_{0}}},$$
(2.80)

где x — координата, отсчитываемая от забоя штрека по направлению движения вентиляционной струи.

Предположим, что в неактивно проветриваемой зоне выработанного пространства газодинамические процессы протекают настолько медленно, что в некотором интервале времени их изменениями можно пренебречь, тогда в остальной части вентиляционного штрека ($x \ge x_0$) задача конвективной диффузии метана сводит к решению уравнения [1]

$$\frac{\partial C_{\text{III}}}{\partial t} + \frac{Q_{\text{III}}}{S_{\text{III}}} \cdot \frac{\partial C_{\text{III}}}{\partial x} = D_{\text{III}} \frac{\partial^2 C_{\text{III}}}{\partial x^2} + \frac{\alpha q_{\text{B}}}{S_{\text{III}}} e^{-\alpha(x-x_0)}, \qquad (2.81)$$

где $C_{\text{ш}}$ – объемная доля метана в вентиляционном штреке на расстоянии, %;

 $Q_{\rm m}$ – расход воздуха в исходящей вентиляционной струе участка, м³/c;

 $q_{\scriptscriptstyle \rm B}$ — дебит метана в утечках воздуха через неактивно проветриваемую зону выработанного пространства, м 3 /с;

α – показатель изменения газовыделения вдоль вентиляционного штрека, 1;

 $D_{\rm m}$ – коэффициент диффузии метана в вентиляционном штреке, м²/с;

 $S_{\rm m}$ — площадь поперечного сечения вентиляционного штрека, м².

Из граничных условий для уравнения (2.81) используем функцию (2.80) при $x = x_0$. На противоположном конце вентиляционного штрека ($x \to \infty$) примем

$$\left. \frac{\partial C_{\text{III}}}{\partial x} \right|_{x \to \infty} = 0. \tag{2.82}$$

В таком случае для нормального режима проветривания выемочного участка $(Q_{\rm III}=Q_{\rm III0})$ и работы дегазации $(q_{\rm B}=q_{\rm B0})$ из решения уравнения (2.81) при $\partial C_{\rm III}/\partial t=0$ с указанными граничными условиями при t=0 получим начальное распределение концентрации метана в вентиляционном штреке на расстоянии $x\geq x_0$

$$C_{\text{III}}(x,0) = C_{\text{III}}(x_0,0) + \frac{q_{\text{B0}}}{Q_{\text{III}0} + \alpha S_{\text{III}} D_{\text{III}}} \left[1 - e^{-\alpha(x-x_0)} \right]. \tag{2.83}$$

Поскольку неактивно проветриваемая зона выработанного пространства не оказывает влияния на переходный газодинамический процесс в вентиляционном штреке, то при изменении параметров работы вентиляции и дегазации принимаем $q_{\text{в}} = q_{\text{в.l}} = Q_{\text{ш1}} / Q_{\text{ш0}} \cdot q_{\text{в0}}$.

При одновременном изменении параметров работы дегазации и вентиляции, когда расход воздуха в вентиляционном штреке $Q_{\rm m} = Q_{\rm m1}$ и дебит метана из выработанного пространства $q_{\rm B} = q_{\rm B1}$, решение уравнения (2.81) с начальными и граничными условиями (2.80) — (2.82) при $x = x_0$ может быть найдено с помощью подстановки уравнения (2.60), при этом переменную (z) заменить переменной $x - x_0$. Полученное таким образом решение после некоторых преобразований примет вид

$$C_{\text{III}}(x,0) = C_{\text{III}}(x_{0},0) + \frac{q_{\text{B.0}}}{Q_{\text{III}0} + \alpha S_{\text{III}} D_{\text{III}}} \left[1 - e^{-\alpha(x-x_{0})} \right] + \frac{x - x_{0}}{2\sqrt{\pi D_{\text{III}}}} \int_{0}^{t} \frac{C_{\text{III}}(x_{0},\theta) - C_{\text{III}}(x_{0},0)}{(t,\theta)^{1.5}} \exp \left\{ -\left[\frac{Q_{\text{III}}(t-\theta)}{\frac{S_{\text{III}}(x-x_{0})}{(x-x_{0})^{2}}} - 1 \right]^{2} \right\} d\theta.$$

$$(2.84)$$

Решение уравнения (2.84) описывает переходный газодинамический процесс при изменении параметров проветривания и дегазации в вентиляционном штреке.

Для анализа приведем формулу (2.84) к безразмерному виду

$$\zeta_{\text{III}} = \frac{\lambda}{2\sqrt{\pi\tau_{\text{III}}/\delta_{\text{III}}}} \int_{0}^{1} \frac{\Delta \overline{C}_{\text{III}}(\overline{\Theta})}{(1-\overline{\Theta})^{1.5}} \exp \left[-\left(\frac{\frac{\tau_{\text{III}}}{\lambda}(1-\overline{\Theta})-1}{2\sqrt{\frac{\tau_{\text{III}}(1-\overline{\Theta})}{\delta_{\text{III}}\lambda^{2}}}} \right)^{2} \right] d\overline{\Theta}, \qquad (2.85)$$

где
$$\overline{\Theta} = \frac{\Theta}{t}$$
, $\delta_{\text{ш}} = \frac{Q_{\text{ш}} l_{\text{ш}}}{D_{\text{ш}} S_{\text{ш}}}$;

 l_{m} – условная длина вентиляционного штрека, м.

Выражая $\Delta \overline{C}_{\text{\tiny III}}$ через функцию $\zeta_{\text{\tiny II}}$ и $\zeta_{\text{\tiny B}}$, согласно формуле (2.80) получим

$$\Delta \overline{C}_{\text{III}} = \frac{\left(1 - K_{Q_{\text{II}}}\right) \zeta_{\text{I}} + \gamma (K_q - K_{Q_{\text{B}}}) \zeta_{\text{B}}}{\left(1 - K_{Q_{\text{II}}}\right) + \gamma (K_q - K_{Q_{\text{B}}})}, \tag{2.86}$$

где $K_{Q_{\Pi}}$ – глубина регулирования расхода воздуха в лаве $K_{Q_{\Pi}} = Q_{\Pi 1} / Q_{\Pi 0}$;

 $K_{Q{ B}}$ — глубина регулирования расхода воздуха в активно проветриваемой зоне выработанного пространства $K_{Q{ B}}=Q_{{ B}1}$ / $Q_{{ B}0}$;

 γ – удельный вес метановыделения из сближенных пластов $\gamma = q_{cn0} / q_{cn}$, H/M^3 ;

 K_q – глубина регулирования дебита метана из сближенных угольных пластов при дегазации (K_q = $q_{\rm cnl}$ / $q_{\rm cn}$), м.

Поскольку условная длина вентиляционного штрека может считаться произвольной, то, полагая $\tau_{\rm m}=\tau_{\rm n}$ при $\Delta\overline{C}_{\rm m}=\zeta_{\rm n}$ или $\tau_{\rm m}=\tau_{\rm B}$ при $\Delta\overline{C}_{\rm m}=\zeta_{\rm B}$, найдем условную длину вентиляционного штрека $l_{\rm m}=\frac{Q_{\rm m1}\ /\ S_{\rm m}}{Q_{\rm B1}\ /\ S_{\rm B(n)}}l_{\rm n}$.

По формуле (2.85) для $\lambda=0$ и для $\lambda=0,5$ построены кривые роста относительной концентрации метана при различных сечениях вентиляционного штрека в зависимости от критерия гомохронности ($\tau_{\pi(B)}$) при фиксированных параметрах $\delta_{\pi}=2$ и $\delta_{\text{II}}=70$ (рисунок 2.10).

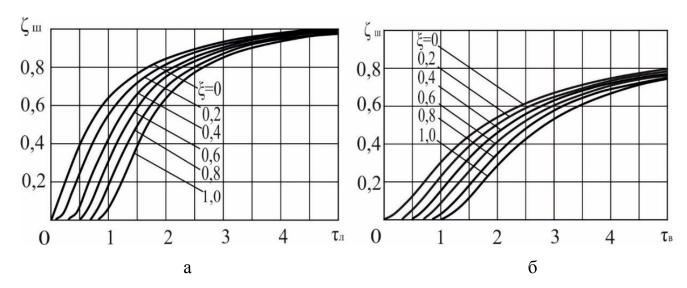


Рисунок 2.10 – Зависимость относительной концентрации метана в вентиляционном штреке от безразмерного времени при нарушении режима работы проветривания (a) и дегазации (б)

Путем сравнения теоретических и экспериментальных данных можно определить неизвестные коэффициенты диффузии метана и пьезопроводности массива пород, и использовать представленные зависимости как номограммы для определения газовой обстановки на выемочном участке при изменении режимов работы вентиляции и дегазации.

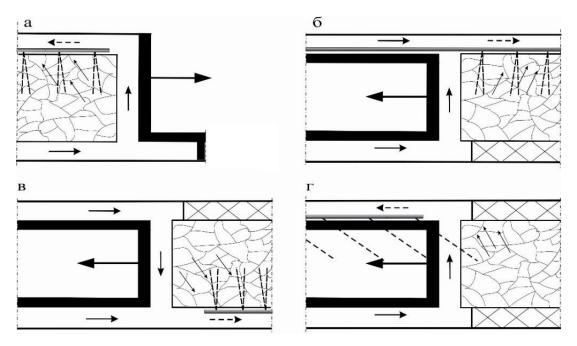
2.4. Выводы к разделу 2

- 1. Исследована фильтрация метана из сближенных угольных пластов в дегазационную скважину при различных режимах работы дегазации. Разработана математическая модель процесса истечения газа в дегазационную скважину. Получено решение начально-краевой задачи, соответствующей математической модели, которые позволяет определить зависимость распространения поля давлений от создаваемого разрежения в дегазационных скважинах. Распределение поля давлений при фильтрации метана дает возможность определить величину дебита метана в дегазационную скважину и в выработанное пространство при отключении дегазации.
- 2. Исследована динамика метановоздушной смеси в дегазационных скважинах и дегазационных трубопроводах с двучленным законом сопротивления и зависимостью плотности метана от создаваемого разрежения в дегазационной сети. Установлены закономерности подсосов метана и воздуха к одиночной скважине и к группе скважин, а также в дегазационный газопровод.
- 3. Получены аналитические зависимости дебитов метана и воздуха в дегазационной скважине и газопроводе, отношение которых определяет содержание метана на каждом участке дегазационной сети. Установлено, что расход метановоздушной смеси в дегазационных газопроводах может определяться не по давлению, а по депрессиям или создаваемым разрежением с учетом поправочного коэффициента на турбулентное аэродинамическое сопротивление в зависимости от давления и концентрации метана.
- 4. Разработана математическая модель нестационарной конвективной диффузии переходных газодинамических процессов в лаве, выработанном пространстве и вентиляционном штреке, что позволяет оценить газовую обстановку в выемочном участке при общем обесточивании горного предприятия. Получены и представлены в графической интерпретации зависимости относительных концентраций метана от характерных для данного процесса критериев подобия, гомохронности и кратности обмена воздуха.

РАЗДЕЛ 3

ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ГАЗОДИНАМИКИ В ВЫЕМОЧНЫХ УЧАСТКАХ

3.1. Исследование влияния схем проветривания выемочных участков на образование местных скоплении метана при отключении систем дегазации


Схемы проветривания выемочных участков с точки зрения условий образования и формирования местных скоплений метана следует разделить на две основные категории: с выдачей исходящей вентиляционной струи из лавы на выработку в массиве угля (схема 1-М) и на выработку, примыкающую к выработанному пространству (схемы 1-В, 2-В, 3-В) [117].

Местные скопления метана образуются при посадках основной кровли или у окон в бутовой полосе [18, 96, 127]. Для ликвидации местных скоплений метана по длине выработки используют щитки увеличивающие скорость воздуха в горной выработке, а у окон бутовых полос – специальные камеры смешивания [3, 15, 16, 84].

Наиболее опасным местом образования местных скоплений метана является зона максимальной разгрузки сближенных угольных пластов, которую определяют их расположением, шагом посадки основной и непосредственной кровли, крепостью пород, типом и состоянием изолятора для поддержания вентиляционной выработки (бутовая полоса, костры, БЖБТ, БИ-крепь, наличие окон в изоляторе).

В работе [93, с. 115] установлено, что чем больше соотношение минимального расхода воздуха (Q_{\min}), к фактическому расходу воздуха (Q_{φ}), тем в большей степени изменяется расход воздуха на выемочном участке и концентрация метана в выносимых утечках воздуха. Следует отметить, что резкое увеличение расхода воздуха при возвратноточных схемах проветривания и столбовых системах разработки приводит к непрогнозируемым, так называемым «всплескам» метана и может привести к повышению объемной доли метана до взрывоопасных концентраций.

В ходе проведенного анализа схем проветривания выемочных участков газовых шахт, установлено, что на девяти выемочных участках применяют возвратноточную схему проветривания при сплошной системе разработки типа 1-В-Н-в-вт (рисунок 3.1 а) с невысокими нагрузками на очистные забои (порядка 245...564 т/сут). Вынос метана из выработанного пространства при данной схеме проветривания составляет (0,6...2,7 м³/мин) и происходит непосредственно в вентиляционную выработку рассредоточено на расстоянии 10...120 м от лавы, что снижает вероятность образования местных скоплений метана.

а – возвратноточная схема проветривания (1-В-Н-в-вт); б – прямоточная схема проветривания с частичным разбавлением вредностей (2-В-Н-в-пт); в – прямоточная схема проветривания с полным обособленным разбавлением вредностей (3-В-Н-н-пт); г – возвратноточная схема проветривания (1-М-Н-в-вт)

Рисунок 3.1 – Основные схемы проветривания выемочных участков шахт Донецкой Народной Республики, применяющих системы дегазации

Прямоточные схемы проветривания с частичным разбавлением вредностей типа 2-В-Н-в(н)-пт, применяют на восьми выемочных участках (рисунок 3.1 б) или полным обособленным разбавлением вредностей типа 3-В-Н-в(н)-пт. Метан, выделяющийся на конвейерной выработке, не поступает в лаву при столбовой системе разработки (рисунок 3.1 в) применяют на выемочных участках с нагрузками до 4,0 тыс. т/сут. Вынос метана из выработанного пространства, для

данных схем проветривания, удален на расстоянии 30...80 м от очистного забоя и рассредоточен по длине вентиляционной выработки.

Вероятность образования местных скоплений метана на вентиляционной выработке при прямоточной схеме проветривания, гораздо меньше, чем при возвратноточных схемах проветривания, а увеличение концентрации метана имеет меньшее значение и менее выраженный характер всплеска.

При схемах проветривания с выдачей исходящей струи на выработанное пространство (1-В, 2-В, 3-В), метановыделение в вентиляционную выработку [98] растянуто на расстоянии 20 – 440 м от забоя в зависимости от аэродинамического сопротивления изолятора под вентиляционным штреком (рисунок 3.2). Чем больше сопротивление изолятора, тем более растянут вынос метана.

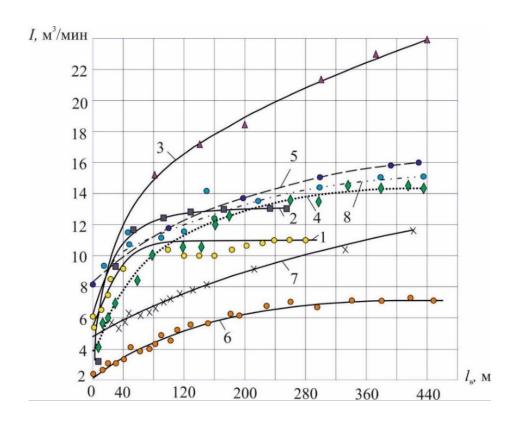


Рисунок 3.2 – Изменение дебита метана по длине вентиляционной выработки на восьми выемочных участках (для схем проветривания 1-B, 2-B, 3-B)

Возвратноточную схему проветривания при столбовой системе разработки (рисунок 3.1 г) типа 1-М-Н-в-вт применяют на одном выемочном участке. Данная схема проветривания для газовых шахт является наиболее опасной по образованию

местных скоплений метана в тупике погашения вентиляционной выработки и на ее сопряжении с лавой [15, 35, 61, 94] из-за:

- большой доли газовыделения из выработанного пространства (60 90 % от газообильности выемочного участка);
- разрушения дегазационных скважин после прохода лавы и снижения концентрации метана в отводимой смеси;
- сосредоточенного на небольшой площади выноса метана из выработанного пространства;
- участия в разбавлении выделяющегося метана только части воздуха, поступающего на выемочный участок, а именно, утечек воздуха через выработанное пространство, которые примерно в 1,2-1,5 раза меньше, чем при схемах проветривания с примыканием вентиляционных выработок к выработанному пространству.

В данной схеме вынос метана из выработанного пространства сосредоточен на небольшой площади тупика погашения вентиляционной выработки и в верхней части лавы, примыкающей к нему (порядка 10...20 м) [81]. Разбавление метана практически осуществляется только утечками воздуха через выработанное пространство, которые на 22 % меньше, а эффективность дегазации скважинами в два раза ниже, чем в схемах типа 1-В. Средняя объемная доля метана в тупике погашения вентиляционной выработки при схемах проветривания типа 1-М, практически всегда превышает 2,0 % [84].

При столбовых системах разработки и прямоточных схемах проветривания (2-В, 3-В) и сплошной системе разработки с возвратноточной схемой проветривания (1-В) при прочих равных условиях вынос метана удален от лавы и рассредоточен на расстоянии до 400 м по вентиляционной выработке, в связи с чем увеличение концентрации метана имеет менее выраженный характер всплеска [93, с. 116].

В настоящее время особое внимание уделяют столбовым системам разработки с отводом исходящей из лавы вентиляционной струи на выработки в массиве угля.

При отключении системы дегазации наиболее рациональным является сохранение нормального режима проветривания с увеличением расхода воздуха на выемочный участок, чтобы нормализовать газовую обстановку и иметь возможность вести аварийно-восстановительные работы.

На первом этапе определяем метановыделение на выемочном участке после отключения системы дегазации $I_{yq}^{'}$ по формуле

$$I'_{yq} = I_{yq} + \Delta I_{yq} + \Delta I_{orc},$$
 (3.1)

где ΔI_{yy} – дополнительное среднее метановыделение на выходе из лавы при отключении дегазации, м³/мин;

 $\Delta I_{\rm orc}$ – дополнительное среднее метановыделение на выходе из лавы при отключении газоотсоса, м³/мин.

По результатам расчета определяем минимально-допустимый расход воздуха для нормальной работы выемочного участка $Q_{\text{uc.min}}$, по формуле [117, 124]

$$Q_{\text{Hc.min}} = \frac{100(I_{yy} + \Delta I_{yy})k_{H}}{C_{\pi}}.$$
 (3.2)

В проектах отработки выемочных участков при схеме 1-М определим значение коэффициента учитывающего опасность образования местных скоплений метана на сопряжении лавы с вентиляционной выработкой и в тупике погашения k_0 , по формуле [117]

$$k_{0} = \frac{1434\overline{I}_{\text{BII}} \cdot \sqrt{S_{\text{cB}}}}{Q_{\text{yq}}^{1,5} \cdot \left(\frac{k_{\text{yt.B}} - 1}{k_{\text{yt.B}}}\right)^{1,5}} \le 1,$$
(3.3)

где S_{cB} — проектная площадь поперечного сечения вентиляционной выработки в свету, м²;

 $\overline{I}_{\mbox{\footnotesize{вп}}}$ — среднее фактическое (ожидаемое) метановыделение из выработанного пространства на выемочном участке с учетом предварительного его отвода дегазацией, м 3 /мин, определяем по формуле

$$\bar{I}_{B\Pi} = I_{VI} - I_{OI} - k_{B\Pi} I_{\Pi}. \tag{3.4}$$

Для схем проветривания с выдачей исходящей из лавы вентиляционной струи на выработанное пространство типа 1-В, 2-В и 3-В местные скопления метана образуются в основном в вентиляционной выработке с исходящей струей воздуха, примыкающей к выработанному пространству. Вынос метана происходит на расстоянии 20...120 м от лавы. В разбавлении метана принимает участие практически весь воздух, поступающий на участок (схема 1-В), а также дополнительный (схемы 2-В и 3-В), участвующий в разбавлении метана на сопряжении лавы с вентиляционной выработкой [84].

Равномерное поступление метановоздушной смеси в выработку без образования метановых скоплений обеспечивают оставлением вдоль ее специального канала, в котором происходит перемешивание метановоздушной смеси с воздухом (утечками), поступающим через выработанное пространство и из рабочего пространства лавы [55, 86]. Практическое применение данного способа на шахтах Донбасса показало его высокую эффективность, особенно при увеличении подачи воздуха на выемочный участок.

При схемах проветривания с выдачей исходящей вентиляционной струи на массив угля и подаче дополнительного расхода воздуха для подсвежения исходящей из лавы вентиляционной струи со стороны выработанного пространства (схема 2-М) наблюдается образование местных скоплений метана на сопряжении лавы с вентиляционной выработкой, если выполняется условие [84]

$$k_0 = \frac{100\overline{I}_{\text{B.II}}}{Q_{\text{oq}}(k_{\text{yt.B}} - 1)} \le 1.3.$$
 (3.5)

Следует отметить, что увеличение расхода воздуха в дополнительной выработке способствует уменьшению значения коэффициента k_0 .

Для схем типа 1-B, 2-B, 3-B образование опасных скоплений метана в очистной выработке у выработанного пространства под вентиляционным штреком (выработкой) при наличии плотного изолятора и средней скорости движения воздуха в выработке менее 1,0 м/с исключается, если [117]

$$k_{0} = \frac{113, 2\overline{I}_{\text{B.\Pi}} k_{\text{B.\Pi}}}{(Q_{\text{yq}} - Q_{\text{доп}}) \left(\frac{k_{\text{yr.B}} - 1}{k_{\text{yr.B}}}\right) k_{\text{yr.Л}}} \le 1,$$
(3.6)

где $Q_{\text{доп}}$ – расход воздуха, необходимый для подсвежения исходящей из выемочного участка вентиляционной струи, м³/мин;

 $k_{\text{ут.л}}$ – коэффициент учитывающий поступлкение (притечки) воздуха из выработанного пространства в призабойную часть лавы, 1.

Установлено, что при столбовой системе разработки длительность переходного газодинамического процесса значительно больше, чем при сплошной [53, 58, 59, 83, 84, 94, 109, 114]. Следовательно, в аналогичных горнотехнических условиях концентрация метана на вентиляционном штреке выемочного участка, разрабатываемого сплошной системой разработки нарастает интенсивнее, чем на участке, отрабатываемом столбовой системой разработки.

3.2. Моделирование влияния дегазационных скважин на метановыделение из сближенных угольных пластов

Выработанное пространство само по себе как фильтрующая среда не является стабильным и представляет собой сложную структуру, основные характеристики

которой постоянно меняются во времени и пространстве по мере подвигания очистного забоя и обрушения пород кровли.

При работе дегазационных скважин на выемочном участке каждая из них оказывает влияние друг на друга и тем самым на газовыделение из сближенных угольных пластов. В результате образуются определенные зоны влияния, представляющие собой концентрические окружности (рисунок 3.3).

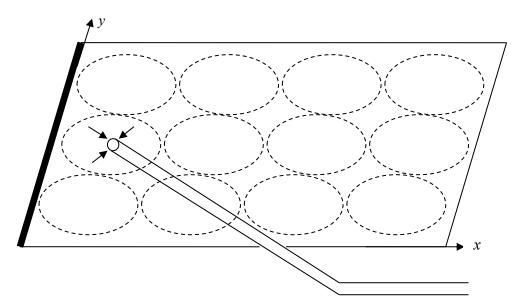


Рисунок 3.3 – Зоны влияния дегазационных скважин в плоскости сближенного угольного пласта

Дегазационные скважины должны быть расположены не только по простиранию разрабатываемого пласта, но и по его падению, так как при длине лав более 150 м одной скважины явно будет недостаточно. Если по падению пласта расположить три скважины, как показано на рисунке 3.3, то расстояние между их центрами будет 50 м и более. Это говорит о том, что в окрестности дегазационных скважин образуются зоны с обратным током газов из выработанного пространства, что приводит к подсосам воздуха и снижает концентрацию метана в скважинах и дегазационном газопроводе.

Для установления зоны влияния дегазационной скважины в плоскости сближенного угольного пласта используем в трех измерениях уравнение, которое при $k_x = k_y$ в цилиндрических координатах примет вид [126]

$$k_{x}\left(\frac{\partial^{2} P}{\partial r^{2}} + \frac{1}{r}\frac{\partial P}{\partial r}\right) + k_{z}\frac{\partial^{2} P}{\partial z^{2}} + \nu j = 0, \qquad (3.7)$$

где r — координата, отсчитываемая от центра дегазационной скважины, м.

Интенсивность источников газовыделения в единице объема угольнопородного массива и зоне действия отдельной дегазационной скважины представим константой $(j_{\scriptscriptstyle R})$ в виде

$$j_{\scriptscriptstyle \perp} = \frac{\rho q_{\scriptscriptstyle c}}{\pi R^2 m_{\scriptscriptstyle c}},\tag{3.8}$$

где $q_{\rm c}$ – среднее газовыделение в зоне действия дегазационной скважины, м 3 /c;

R – радиус действия дегазационной скважины, м;

 $m_{\rm c}$ — мощность сближенного угольного пласта, м.

Вторую производную по толщине массива представим в конечных разностях

$$k_z \frac{\partial^2 P}{\partial z^2} \approx k_z \frac{P_0 - P}{m_c^2} \,. \tag{3.9}$$

В результате для полого круга уравнение (3.9) примет вид

$$k_x \left(\frac{d^2 P}{dr^2} + \frac{1}{r} \frac{dP}{dr} \right) + k_z \frac{P_0 - P}{m_c^2} + \frac{\mu q_c}{\pi R^2 m_c} = 0.$$
 (3.10)

Решим уравнение (3.10) для полого круга при следующих граничных условиях:

$$P(r_0) = P_1; \quad \frac{dP(R)}{dr} = 0,$$
 (3.11)

где r_0 – радиус дегазационной скважины, м;

 P_1 – давление газа в дегазационной скважине, Па.

Второе граничное условие (3.11) указывает на то, что между дегазационными скважинами градиент давления равен нулю, и каждая из них равноправна по отношению к другим скважинам.

Уравнение (3.10) решаем приближенным методом, для чего примем у множителя перед первой производной $r \approx R_1$, тогда получим

$$k_{x}\left(\frac{d^{2}P}{dr^{2}} + \frac{1}{R_{1}}\frac{dP}{dr}\right) + k_{z}\frac{P_{0} - P}{H^{2}} + \frac{\mu q_{c}}{\pi R^{2}H} = 0,$$
(3.12)

где R_1 – фиксированное расстояние от центра дегазационной скважины, м.

В этом случае частное решение уравнения (3.12) можно представить в виде

$$P_2 = P_0 + \frac{\mu q_c H}{k_z \pi R^2}.$$
 (3.13)

Определим корни однородного уравнения (3.13) без последнего слагаемого, исходя из соответствующего ему характеристического уравнения [123]

$$n^2 + \frac{1}{R_1} n - \frac{k_z}{k_x} \frac{1}{H^2} = 0, (3.14)$$

соответственно корни характеристического уравнения будут равны

$$n_{1,2} = -\frac{1}{2R_1} \pm \sqrt{\frac{1}{4R_1^2} + \frac{k_z}{k_x} \frac{1}{H^2}} . {(3.15)}$$

Решение уравнения (3.12) представим в виде

$$P(r) = P_2 + A_1 \exp(n_1 r) + A_2 \exp(n_2 r),$$
 3.16)

Используя граничные условия (3.13), определим константы интегрирования A_1 и A_2 :

$$A_{1} = \frac{P_{1} - P_{0} - \frac{\mu q_{c} m_{c}}{k_{x} \pi R^{2}}}{\exp(n_{1} r_{0}) - \frac{n_{1}}{n_{2}} \exp(n_{2} r_{0}) \exp[(n_{1} - n_{2})R]};$$
(3.17)

$$A_2 = -A_1 \frac{n_1}{n_2} \exp[(n_1 - n_2)R]. \tag{3.18}$$

Для определения фиксированного расстояния от центра дегазационной скважины (R_1) найдем точное решение уравнения (3.12) при $k_z = q_c = 0$ и граничных условиях:

$$P(r_0) = P_1$$
 и $P(R) = P_2$, (3.19)

где P_2 – давление газа до включения дегазационной скважины в работу, Π а.

Представляя в этом случае уравнение в виде

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dP}{dr}\right) = 0, (3.20)$$

после интегрирования уравнения (3.20), получим

$$\frac{dP}{dr} = \frac{K_1}{r} \,. \tag{3.21}$$

Интегрируя еще раз уравнение (3.21), будем иметь

$$P(r) = K_0 + K_1 \ln(r), \qquad (3.22)$$

где K_0 и K_1 – константы интегрирования.

Определяем константы интегрирования:

$$K_{0} = \frac{P_{2} \ln(R) - P_{1} \ln(r_{0})}{\ln\left(\frac{R}{r_{0}}\right)};$$
(3.23)

$$K_{1} = \frac{P_{1} - P_{2}}{\ln\left(\frac{R}{r_{0}}\right)}.$$
(3.24)

В результате решение (3.22) можно представить в виде

$$P(r) = \frac{P_2 \ln\left(\frac{R}{r}\right) + P_1 \ln\left(\frac{r}{r_0}\right)}{\ln\left(\frac{R}{r_0}\right)}.$$
 (3.25)

В то же время при начальных $k_z=q_c=0$ и граничных условиях $P(r_0)=P_1$, $P(R)=P_2$ можно дважды интегрируя уравнение (3.12) представить в виде

$$P(r) = P_{1} - \frac{P_{1} - P_{2}}{1 - \exp\left[-\frac{R - r_{0}}{R_{1}}\right]} + \frac{P_{1} - P_{2}}{\exp\left(-\frac{r_{0}}{R_{1}}\right) - \exp\left(-\frac{R}{R_{1}}\right)} \exp\left(-\frac{r}{R_{1}}\right).$$
(3.26)

На рисунке 3.4 представлены результаты расчета по формулам (3.25) и (3.26) распределения давления газа в окрестности дегазационной скважины при отсутствии газообмена с выработанным пространством ($k_z = q_c = 0$); $r_0 = 0.1$ м; R = 25 м и $(P_2 - P_1) = 0.1P_0$.

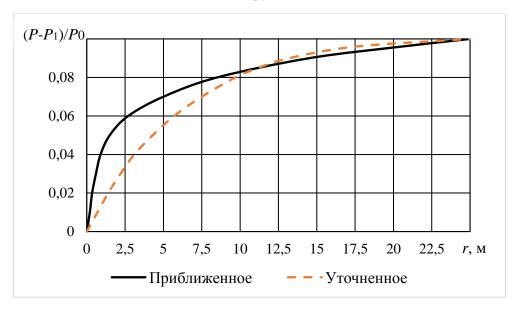


Рисунок 3.4 — Результаты распределения давления газа в окрестности дегазационной скважины по уточненной (3.26) и приближенной (3.25) формуле

Поскольку интересен процесс распределения давления газа не вблизи дегазационной скважины, а в зоне контакта с другими скважинами, то как показывают результаты теоретического расчета, наилучшего приближения можно достичь на расстоянии 10...25 м и принимая в формуле (3.26) $R_1 = 6$ м.

Дальнейшие расчеты выполнялись при $R_1 = 6$ м. Моделировалось влияние ряда дегазационных скважин друг на друга выполнялось по формуле (3.26) и расстояниях между ними 50 м (рисунок 3.5).

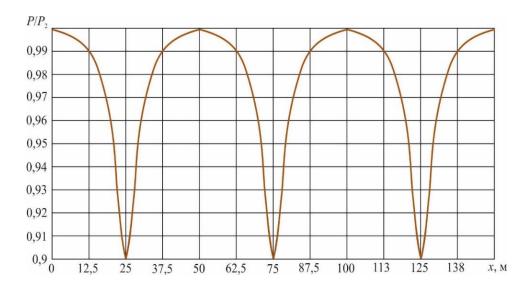


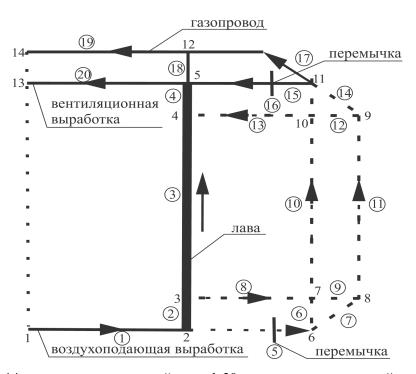
Рисунок 3.5 — Результаты моделирования влияния работы дегазационных скважин друг на друга

Таким образом установлено, что на расстоянии до 100 м от лавы разрежение в дегазационных скважинах должно составлять $P_1 = 0.96P_0$, а на расстоянии 100...150 м $P_1 = 0.94P_0$. Остальные исходные данные принимались, равными: $r_0 = 0.1$ м; R = 25 м; $R_1 = 6$ м; H = 40 м.

При моделировании принимались средние значения относительных давлений согласно ранее полученным данным на расстоянии до $100 \,\mathrm{m}$ от лавы и $P_2/P_0 = 1,1 \,P_0$ — на расстоянии $100...150 \,\mathrm{m}$. При этом разрежение принималось таким образом, чтобы снизить давление в угольно-породном массиве до $0,9P_2$ и тем самым отобрать метан по всей длине лавы, и на такую же длину по простиранию сближенного угольного пласта, исключая подсосы воздуха из выработанного пространства.

3.3. Моделирование влияния параметров работы системы газоотсоса на воздухораспределение в горных выработках выемочного участка

Для учета влияния системы газоотсоса на газодинамические параметры выработанного пространства авторы работы [25] предлагают применять кластерные модели, в которых соблюдаются различные режимы движения метановоздушной смеси от ламинарного до турбулентного. Однако кластерный способ описания течения газов в элементарном объеме массива для неподготовленного пользователя, представляет значительные трудности при их применении в моделировании.


В связи с ограниченностью практического изменения исследуемых параметров системы газоотсоса при проведении шахтного эксперимента, фактическое распределение воздуха и его оценка определялась путем расчета на ПЭВМ в программной системе «РЕВОД» [54]. При использовании компьютерного моделирования полностью учитывалось влияние таких факторов как работа ВГП и газоотсасывающего вентилятора, выработок шахтной вентиляционной сети, газопровода, утечек воздуха в призабойном пространстве, а также суммарных утечек воздуха.

При расчетах воздухораспределения и его изменения в выработках

выемочных участков обычно используют упрощенные модели выработанного пространства в зависимости от поставленных целей исследования [29]. Все исходные данные могут быть получены по результатам проведения депрессионной съемки или расчетом в соответствии с требованиями [116].

Выбор режима работы ВГП, проветривание объектов, движение воздуха в выработанном пространстве принимаем одной ветвью, параллельной очистному забою (для схемы 1-М).

Для моделирования влияния параметров системы газоотсоса на воздухораспределение выемочного участка разработана компьютерная модель, состоящая из действующих выработок шахты, системы газоотсоса (вентилятор, газопроводы) и выработанного пространства, представленного 12-ю ветвями с разделением утечек воздуха на два нормируемых потока (направления) в пределах призабойного пространства и остальной части выработанного пространства (рисунок 3.6).

1-14 – узлы вентиляционной сети; 1-20 – ветви вентиляционной сети

Рисунок 3.6 — Принципиальная схема вентиляционных соединений выработок и газопроводов для расчета влияния газоотсоса на аэродинамические параметры выемочного участка

Принципиальная схема в каждом случае привязывается к конкретной схеме проветривания шахты и выемочного участка. Лаву разделяем на три части: вход в лаву, средняя часть и выход из лавы. Вход в лаву и выход из лавы принимаем длиной по 20 м. Среднюю часть лавы определяем, как лаву соответствующей длины. Аэродинамическое сопротивление входа и выхода из лавы определяем пропорционально ее длине или по [116]. Место выброса метановоздушной смеси (смесительная камера) выбирают в выработке, позволяющей разбавить ее до предельно допустимых концентраций в соответствии с [103].

Так как объектом дегазации является выработанное пространство, а утечки воздуха в выработанном пространстве могут достигать более 40 % от поступающего воздуха в лаву [64, 71, 86], поэтому отключение дегазации может оказывать существенное влияние на параметры проветривания выемочных участков.

Исследования изменения аэродинамических параметров проветривания выемочного участка с использованием газоотсасывающей проводились на примере характерного выемочного участка 2-й западной лавы пласта h_8 шахты «Шахтерская-Глубокая».

Шахта «Шахтерская Глубокая» относится к сверхкатегорийным шахтам по газу, с абсолютным метановыделением 26,4 м 3 /мин. Проветривается тремя ВГП с суммарной подачей воздуха в шахту более 27000 м 3 /мин. Вторая западная лава пласта h_8 проветривается по возвратноточной схеме типа 1-М-Н-в-вт и имеет длину 210 м с вынимаемой мощностью угольного пласта равной 0,9 м. Расход подаваемого свежего воздуха на выемочный участок составляет 1125 м 3 /мин.

Депрессию (h) для рассматриваемого типа вентилятора ВМЦГ-7М определяем по формуле:

$$h = 1073, 5 - 5,735Q_{\rm r}^2, \tag{3.27}$$

где $Q_{\rm T}$ – подача источника тяги, м³/с.

Данная зависимость достаточно точно описывает фактическую характеристику источника тяги с погрешностью не более 1,0 % в рабочей зоне.

Утечки воздуха газопровода в вентиляционной модели заданы двумя ветвями в его начале и конце у регулировочных окон.

Аэродинамическое сопротивление утечек воздуха через выработанное пространство $R_{\text{ут.вп}}$, определяем по формуле

$$R_{\text{yt.BII}} = \frac{h_{\text{ou}}}{\left[\left(1 - \frac{1}{k_{\text{yt.B}}}\right)Q_{\text{yu}}\right]^{2}},$$
(3.28)

где $h_{\text{оч}}$ – депрессия воздуха в очистном забое, даПа;

 $k_{\text{ут.в}}$ – коэффициент утечек воздуха через выработанное пространство.

Аэродинамическое сопротивление утечек воздуха в призабойном пространстве определяем из условий параллельного соединения по формуле

$$R_{\text{yr.o3}} = \frac{h_{\text{ou}}}{\left[\left(\frac{k_{\text{o3}} - 1}{k_{\text{yr.B}}}\right)Q_{\text{yu}}\right]^{2}},$$
(3.29)

где k_{03} – коэффициент, учитывающий движение воздуха по части выработанного пространства, непосредственно прилегающей к призабойному.

Аэродинамическое сопротивление утечек воздуха для остальной части выработанного пространства определяем по формуле

$$R_{\text{yr.oct}} = \frac{h_{\text{ou}}}{\left[\left(1 - \frac{k_{\text{os}}}{k_{\text{yr.B}}}\right)Q_{\text{yu}}\right]^{2}}.$$
 (3.30)

Аэродинамическое сопротивление отдельных участков (ветвей) утечек воздуха в выработанном пространстве определяем по удельному аэродинамическому сопротивлению и длине участков с учетом средних значений шагов посадки непосредственной и основной кровли, а также общей длины лавы. Схема вентиляционной модели выемочного участка представлена на рисунке 3.7.

Ветви № 896, 901, 902 и 724 приняты длиной равной 10 м; ветви № 897, 898, 903 и 904-20 м; ветви № 905 и 906-28 м; ветви № 899 и 900-170 м.

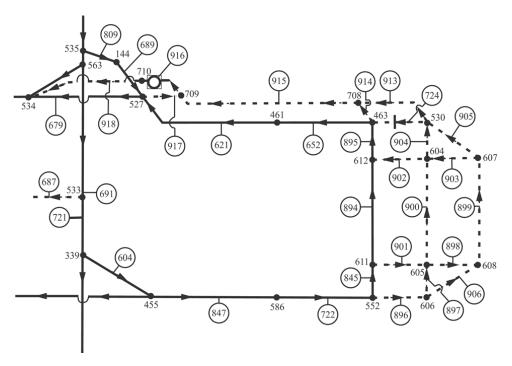


Рисунок 3.7 — Вентиляционная модель 2-й западной лавы пласта h_8 шахты «Шахтерская-Глубокая» с отводом метана из выработанного пространства вентилятором ВМЦГ-7М

Тупик погашения в расчетной схеме задан отдельной ветвью, чтобы иметь данные о расходе и направлении движения в нем воздуха, и который становится диагональю при работе системы газоотсоса.

Моделирование выполнялось на газопроводы различного диаметра и длины, а также аэродинамического сопротивлении тупика погашения вентиляционного штрека с перемычкой.

На нагнетательной части газопровода (ветвь 918) во всех вариантах принят трубопровод диаметром 800 мм, длиной 100 м и аэродинамическим сопротивлением 0,57 да $\Pi a \cdot c^2/m^6$. Утечки воздуха в газопровод в вентиляционной модели представлены двумя ветвями 914 и 917, расположенными у окон для замера и регулирования параметров отводимой метановоздушной смеси.

По результатам компьютерного моделирования (таблица 3.1) расход воздуха на выемочном участке изменялся всего на 54,3 м³/мин или на 4,9 %.

Таблица 3.1 — Воздухораспределение на выемочном участке 2-й западной лавы пласта h_8 шахты «Шахтерская-Глубокая» при работе газоотсасывающего вентилятора ВМЦГ-7М

	ě		Расход	воздуха,		Утечка воз,	духа через выра странство, м ³ /м	аботанное	Расход во трубопровод	здуха в ве м ³ /мин	Притечк	и воздуха	м ³ /мин	-
тр та, мм	тчески тение вода, 'м ⁶	9 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lin lin	труоопровод	ic, w /winii	в трубопровод			духа в е онной ки, н					
Диаметр газопровода, мм	Аэродинамическое сопротивление трубопровода, даПас ² /м ⁶	в середине лавы на выходе из лавы на участие на участие на участие на участи на сето в сето в сето в начале в		в начале	в начале	в начале	в конце	влаву	Расход воздуха в тупике вентиляционной выработки, м³/мин					
При длине трубопровода газоотсоса 800 м														
Без газо	оотсоса	756,7	862,3	1103,1	1103,1	186,6	159,8	346,4	-	-	1	-	105,6	240,7
600	23,40	766,4	788,1	1122,1	843,5	191,6	164,1	355,7	264,3	339,2	14,3	60,5	21,7	69,7
800	4,58	770,8	785,0	1125,9	807,0	190,8	164,3	355,1	302,4	350,1	16,5	31,2	14,2	38,5
1000	1,30	771,6	784,1	1127,0	789,5	190,9	164,5	355,4	319,9	356,0	17,5	18,6	12,5	22,9
1200	0,44	778,7	762,2	1137,7	605,8	192,8	166,2	359,0	504,0	551,9	27,9	19,9	-16,5	-128,5
ВМЦГ-7М	остановлен	756,3	850,0	1104,6	1079,6	187,8	160,5	348,3	31,8	25,6	-6,8	0,7	93,6	222,83
Заслонка	закрыта	759,1	860,0	1105,1	1089,6	186,4	159,6	346,0	9,5	14,3	6,0	-1,2	109,0	235,5
	При длине трубопровода газоотсоса 600 м													
Без газо	отсоса	768,4	875,7	1120,1	1120,1	189,4	162,2	351,6	-	-	-	-	107,2	244,4
600	17,55	777,3	800,4	1138,8	853,3	194,1	167,4	361,5	265,2	339,8	20,4	54,2	23,0	73,3
800	3,44	778,7	794,4	1140,7	820,0	194,4	167,7	362,1	313,4	347,4	7,4	26,7	15,7	33,0
1000	0,98	782,8	794,6	1143,0	803,9	193,5	166,7	360,2	334,8	353,9	4,3	14,9	11,8	13,6
1200	0,329	787,1	762,3	1151,3	606,2	195,7	168,5	364,2	538,9	559,2	6,2	14,1	-24,8	-149,9
					I	Три длине тр	убопровода газ	воотсоса 400) м					
Без газо	оотсоса	780,9	889,9	1138,3	1138,3	192,5	164,9	357,4	-	-	1	-	109,0	248,4
600	11,70	790,9	810,1	1155,2	860,7	195,7	168,6	364,3	279,4	340,1	15,2	45,5	19,2	65,7
800	2,29	789,3	803,6	1155,3	822,9	196,7	169,4	366,1	330,0	354,8	2,4	22,4	14,3	21,8
1000	0,65	795,2	775,3	1163,3	629,8	197,8	170,3	368,1	528,6	552,8	4,9	19,3	-19,9	-140,6
1200	0,219	795,7	771,2	1164,1	614,3	197,9	170,4	368,3	543,5	561,5	6,2	11,7	-24,5	-150,6
				•	I	Три длине тр	убопровода газ	воотсоса 200	Эм					
Без газо	оотсоса	794,1	904,8	1157,4	1157,4	195,7	167,7	363,4,	-	-	-	-	110,8	252,6
600	5,85	800,4	818,9	1170,6	860,7	198,9	171,3	370,2	293,9	344,1	16,0	34,2	18,6	57,7
800	1,15	799,6	815,5	1171,5	838,6	199,8	172,2	372,0	325,2	349,1	7,7	16,2	15,9	30,8
1000	0,33	806,0	784,5	1177,7	633,2	199,5,	172,1	371,6	536,3	558,9	8,2	14,4	-21,5	-143,1
1200	0,11	803,9	780,0	1177,0	621,9	200,4	172,8	373,2	548,9	563,8	6,3	8,6	-23,9	-151,8
ВМЦГ-7М	остановлен	795,1	887,1	1160,1	1119,7	196,5	168,5	365,0	47,5	36,4	-7,1	-3,9	91,8	225,5
Заслонка	закрыта	781,8	863,3	1150,6	1134,5	209,5	159,3	368,8	10,4	14,9	5,7	-1,2	81,5	276,9

Расход воздуха в газопроводе увеличился с 264 до 549 м 3 /мин. Утечки воздуха через выработанное пространство в лаву при диаметре газопровода до 800 мм составляют 11.8-23 м 3 /мин, а при диаметре газопровода 1000 и 1200 мм утечки движутся к всасу газопровода минуя лаву с расходом 16.5-24.8 м 3 /мин.

В тупике погашения расход воздуха изменился от $253 \text{ м}^3/\text{мин}$ до $151,8 \text{ м}^3/\text{мин}$ с противоположным направлением, т.е. струя опрокидывается при диаметре газопровода 1000-1200 мм и длине 400 и 200 м соответственно. В исходящей вентиляционной струе участка расход воздуха уменьшился с 1157 до $606 \text{ м}^3/\text{мин}$.

Анализ таблицы 3.1 показывает, что при работе вентилятора с трубопроводами различного диаметра и длины распределение воздуха в лаве, на вентиляционном штреке и в выработанном пространстве существенно изменяется, что следует учитывать при расчетах расхода воздуха для проветривания выемочных участков.

Приведенные расчеты позволяют определить эффективность изолированного отвода метана из выработанного пространства η , по формуле:

$$\eta = \frac{100n}{0.4 + 0.6n},\tag{3.31}$$

где n — отношение изолированного отвода газовой смеси к общему значению утечек воздуха через выработанное пространство, %.

Фактическая эффективность изолированного отвода метана из выработанного пространства η_{φ} , более точно определяем по следующей формуле

$$\eta_{\phi} = \frac{I_{\text{otc}}}{I_{\text{RII}}} = \frac{C_{\text{T}}(Q_{\text{yy}} - Q_{\text{H}})}{I_{\text{yy}} - I_{\text{oy}}},$$
(3.32)

где $I_{\text{отс}}$ – расход метановоздушной смеси, отводимой газоотсосом, м³/мин;

 $C_{\rm T}$ – объемна доля метана в отводимой газоотсосом смеси, %;

 $Q_{\rm u}$ – расход воздуха в исходящей из участка струе воздуха, м³/мин;

 I_{yy} – абсолютное метановыделение на выемочном участке, м³/мин;

 $I_{\text{оч}}$ – метановыделение в очистной выработке, м³/мин.

Значительное влияние на вынос утечек воздуха из выработанного пространства в лаву, а вместе с ними и метана оказывает аэродинамическое сопротивление тупика погашения с установленной в нем перемычкой (таблица 3.2). Компьютерное моделирование при различной длине вентиляционной выработки для рассматриваемых условий показывает, что при увеличении аэродинамического сопротивления тупика погашения с перемычкой вынос утечек воздуха в лаву увеличивается при сопротивлении 0,005 даПа·с²/м6 с 21,7 до 22,9 м³/мин, а при сопротивлении 5,0 даПа·с²/м6 с 268,5 до 283,1 м³/мин.

Таблица 3.2 — Изменение расходов воздуха и его притечек в выработки выемочного участка в зависимости от аэродинамического сопротивления тупика погашения вентиляционной выработки с перемычкой

Длина		Аэродинамическое сопротивление тупика погашения вентиляционной выработки с перемычкой,										
вентиляционной	$N_{\underline{0}}$	0,005	0,05	0,1	0,2	0,5	1,0	5,0				
выработки, м	ветви	Расход воздуха, поступающий в выработки выемочного участка, м ³ /мин										
	722	1109,2	1106,0	1103,1	1099,9	1095,8	1092,4	1086,3				
900	895	780,3	832,0	862,3	897,5	944,6	975,8	1027,9				
800	902	21,7	73,3	105,6	140,9	186,5	217,2	268,5				
	724	329,0	274,0	240,7	202,4	151,2	116,6	58,4				
	722	1126,5	1122,6	1120,1	1116,8	1112,5	1108,9	1102,4				
600	895	792,4	844,1	875,7	911,3	959,0	990,5	1043,1				
000	902	22,2	76,6	107,2	143,1	189,3	220,6	272,6				
	724	334,1	278,5	2444	205,5	153,5	118,4	59,3				
	722	1145,1	1141,9	1138,3	1134,7	1129,5	1125,7	1119,5				
400	895	805,5	859,1	889,9	925,9	983,4	1005,3	1058,3				
400	902	22,4	75,4	109,0	145,4	156,2	225,8	276,7				
	724	339,6	282,8	248,4	208,8	156,2	120,4	60,2				
	722	1164,8	1160,4	1157,4	1153,9	1148,2	1144,1	1136,8				
200	895	818,3	871,5	904,8	921,6	989,4	1021,7	1075,6				
200	902	22,9	79,1	110,8	147,8	158,8	229,5	283,1				
	724	345,4	287,9	252,6	212,3	158,8	122,4	61,3				

При отключении системы газоотсоса за счет общешахтной депрессии по газопроводу диаметром 600 мм и длиной 800 м поступает 31,8 м³/мин (ветвь № 913) воздуха, а при диаметре газопровода 1200 мм и длиной 200 м поступает

 $47,5 \text{ м}^3/\text{мин воздуха}.$

Предложенная компьютерная модель воздухораспределения в выемочном участке при различных параметрах и режимах работы системы газоотсоса позволяет достаточно точно (расхождение с данными депрессионной съемки не превышает 2,0 %), получить распределение воздуха по выработкам выемочного участка, а также определить его направление движения в тупике погашения и поступление из выработанного пространства.

3.4. Численные экспериментальные исследования динамики метановыделения на выемочных участках при общем обесточивании шахт

Проведение экспериментальных исследований газодинамики выемочных участков при изменении режимов работы вентиляции и дегазации в натурных условиях действующих шахт весьма затруднительно, так как связано не только с нарушением их работы, но и опасностью создания в горных выработках опасной газовой обстановки.

В большинстве случаев, значения основных параметров предполагается получать экспериментально, что не всегда безопасно и возможно, а также требует определенное количество замерщиков и длительное время проведения замеров. Так, например, при выполнении научно-исследовательской работы [104, 109] было задействован 36 сотрудников из различных институтов, а непосредственно в экспериментах участвовало 25 человек.

При выполнении экспериментальных исследований с изменением параметров проветривания и дегазации в шахтных условиях создается риск к возникновению не только аварийных ситуаций, но и опасность для людей, находящихся в шахте.

Поэтому, исследование переходных газодинамических процессов в выемочных участках выполнялось с использованием численных методов. Выполнялась оценка газовой обстановки в выемочных участках при общем обесточивании горного предприятия. За исходные данные принимались оперативные данные, полученные в ходе ведения горноспасательных работ на

действующих выемочных участках шахт Донецкой Народной Республики при изменении параметров проветривания и работы систем дегазации.

С этой целью велся учет случаев загазирований горных выработок при общем обесточивании шахт и остановок ВГП в период с 2014 по 2022 год (таблица 3.3).

Таблица 3.3 – Данные по аварийным ситуациям на шахтах Донецкой Народной Республики, повлекшие загазирование горных выработок

Наименование аварийной ситуации	Количество аварийных ситуаций и загазирований по годам										
	2014	2015	2016	2017	2018	2019	2020	2021	2022		
Остановка вентилятора главного проветривания	5	0	5	4	7	4	1	5	12		
Общее обесточивание шахты	24	9	4	4	1	3	2	3	14		
Загазирование при остановке вентилятора главного проветривания или общего обесточивания шахты	26	7	7	5	8	6	2	6	17		

Особое внимание при исследовании переходных газодинамических процессов в выемочных участках шахт уделялось выработанным пространствам действующих лав, так как именно выработанные пространства являются основными накопителями выделяющегося метана из угольно-породного масса при отключении систем дегазации, что зачастую приводит к возникновению пожаров и взрывов газа.

Таким образом, каждый выемочный участок определяется индивидуальными горно-геологическими и газодинамическими параметрами, но при наличии явно выраженных общих закономерностей.

Для исследуемых выемочных участков при возникновении аварийной ситуации (общее обесточивание шахты) принимались следующие исходные данные:

- расход воздуха при нормальной работе лавы (Q_{n0}), м³/с;
- расход воздуха, поступающий в лаву после обесточивания горного предприятия (Q_{n1}) , м³/с;
 - расход метана, каптируемый дегазацией (q_{cn0}), м³/с;
 - суммарное метановыделение на выемочном участке ($q_{\rm cnl}$), м³/с;
- расход воздуха в утечках через активно проветриваемую зону выработанного пространства при нормальной работе лавы $(Q_{\rm B0})$, м 3 /с;
- утечки воздуха через активно проветриваемую зону выработанного пространства при естественной тяге $(Q_{\rm B1})$, м³/с;
- объемная доля метана на исходящей вентиляционной струе при нормальном режиме работы выемочного участка ($C_{\rm B0}$), %;
- площадь поперечного сечения активно-проветриваемой зоны выработанного пространства лавы $(S_{\rm B})$, м²;
- расстояние по нормали от кровли разрабатываемого пласта до почвы дегазируемого сближенного угольного пласта ($l_{\rm cn}$), м;
 - длина лавы (l_{Π}) , м;
 - общее время обесточивания выемочного участка (t), с.

Оценка переходных газодинамических процессов в горных выработках выемочных участков производилась по зависимостям, приведенным в разделе 2.3.

3.4.1. Результаты оценки газовой обстановки на выемочных участках шахты им. А.Ф. Засядько

Шахта им. А.Ф. Засядько относится к категории опасных по внезапным выбросам угля и газа. Пласты l_1 , l_4 и m_3 на разрабатываемых глубинах опасны по внезапным выбросам угля и газа. Пласты l_1 и k_8 , — сближенные. Пласт m_3 разрабатывается как одиночный. Абсолютная газообильность шахты

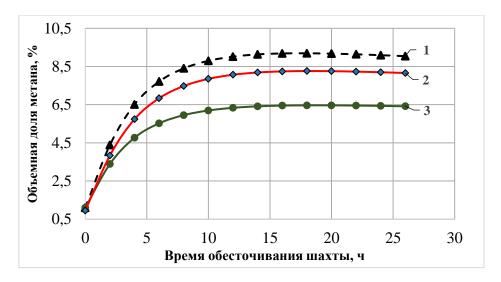
182,9 м³/мин, относительная — 51,4 м³/т. Способ проветривания шахты — всасывающий. Схема проветривания — блочная. Фактический расход воздуха по шахте составлял 33292 м³/мин. Подготовка шахтного поля — панельная.

Из-за повреждения высоковольтных линий электропередач 31.01.2017 произошло общее обесточивание горного предприятия. В шахте находилось 203 человека. На трех выемочных участках (ВУЛ № 3 пласта m_3 , 6-я восточная лава пласта l_4 и 15-я восточная «бис» лава пласта m_3) нарушилось нормальное проветривание и работа дегазационной сети из-за остановки оборудования ВНС.

Схема проветривания рассматриваемых выемочных участков — возвратноточная с независимым восходящим движением воздуха и отводом исходящей струи на углепородный массив. В лавах ВУЛ № 3 пласта m_3 , и 15-й восточной «бис» пласта m_3 , применялась комплексная дегазация сближенных угольных пластов скважинами и выработанного пространства (газоотсос).

Для оценки газовой обстановки по исследуемым выемочным участкам составлена общая таблица с исходными данными (таблица 3.4).

Таблица 3.4 – Исходные данные для оценки газовой обстановки в выемочных участках при общем обесточивании шахты им. А.Ф. Засядько


	Выемочный участок								
Параметр	ВУЛ № 3 пласта m_3	6-я восточная лава	15-я восточная «бис» лава						
	Dyn Ne 3 inacia m3	пласта l_4	пласта m_3						
$Q_{\pi.0}$, м ³ /с	32,50	20,07	31,17						
$Q_{\pi.1}$, м ³ /с	5,42	4,08	4,83						
$q_{cn0}, \text{M}^3/\text{c}$	0,8	0,19	0,87						
$q_{\rm cn1}, {\rm M}^3/{\rm c}$	0,48	0,10	0,40						
C _B 0, %	1,1	1,05	0,95						
$Q_{\rm B0},{\rm M}^3/{\rm c}$	2,6	2,17	4,83						
$Q_{\rm B1},{\rm M}^3/{\rm c}$	0,7	0,67	0,60						
$S_{\rm B}$, ${\rm M}^2$	65	55	55						
$l_{\rm cn}$, м	43	50	76						
<i>l</i> л, м	260	244	260						
<i>t</i> , ч	26	26	26						

Результаты теоретического расчета газовой обстановки по выемочным участкам шахты им. А.Ф. Засядько при общем обесточивании горного предприятия по формуле (2.78), представлены в таблице 3.5.

Таблица 3.5 – Результаты теоретического расчета газовой обстановки по выемочным участкам шахты им. А.Ф. Засядько в результате общего обесточивания горного предприятия

Выемочный	Параметр		Время обесточивания, ч								
участок		0	2	4	6	10	16	24	26		
ВУЛ № 3	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,31	0,62	0,93	1,55	2,48	3,72	4,03		
	$\zeta_{\scriptscriptstyle m B}$	0	0,63	1,03	1,24	1,42	1,47	1,44	1,43		
пласта m_3	<i>C</i> , %	1,10	4,59	6,74	7,91	8,90	9,19	9,04	8,99		
15-я восточная	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,30	0,60	0,91	1,51	2,42	3,63	3,93		
«бис» лава	$\zeta_{\scriptscriptstyle m B}$	0	0,56	0,92	1,14	1,33	1,41	1,40	1,39		
пласта тз	<i>C</i> , %	0,95	3,84	5,74	6,84	7,85	8,24	8,20	8,16		
	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,36	0,72	1,07	1,79	2,86	4,29	4,65		
6-я восточная	$\zeta_{\scriptscriptstyle m B}$	0	0,53	0,85	1,03	1,18	1,24	1,24	1,24		
лава пласта l_4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,45	6,43	6,41							

По результатам теоретического расчета представим графическую зависимость роста объемной доли метана от продолжительности общего обесточивания шахты (рисунок 3.8).

1 - ВУЛ № 3; 2 - 6-я восточная лава; 3 - 15-я восточная лава

Рисунок 3.8 — Результаты прогнозирования газовой обстановки в выемочных участках шахты имени А.Ф. Засядько при общем обесточивании горного предприятия

Так как в результате общего обесточивания шахты горные выработки выемочного участка проветриваются за счет естественной тяги, то можно наблюдать интенсивный рост метановыделения на исходящей вентиляционной

струе в течение первых 10-ти часов, а затем постепенная его стабилизации до уровня абсолютного метановыделения выемочного участка без дегазации.

По оперативным данным, полученным в ходе ликвидации аварийной ситуации подразделениями ГВГСС МЧС ДНР, за первые четыре часа обесточивания шахты, на исходящей вентиляционной струе выемочного участка ВУЛ № 3 пласта m_3 , объемная доля метана выросла с 0,9 до 6,4 %.

Для проверки адекватности разработанной математической модели переходных газодинамических процессов в выемочном участке при изменении параметров проветривания и дегазации, выполнено сопоставление оперативных (фактических) данных с результатами теоретического расчета (рисунок 3.9).

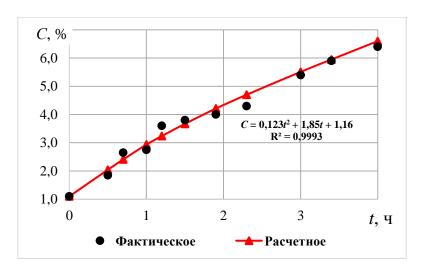


Рисунок 3.9 – Динамика объемной доли метана на выемочном участке ВУЛ № 3 пласта m_3 шахты имени А.Ф. Засядько

Сравнительный анализ (рисунок 3.9) показывает удовлетворительную сходимость результатов исследований. Относительная погрешность в максимальной точке отклонения фактических данных от расчетных значений (при t = 3.0 ч) не превышает 12 %.

3.4.2. Результаты оценки газовой обстановки на выемочных участках шахты «Щегловская-Глубокая»

Шахта «Щегловская-Глубокая» относится к категории опасных по внезапным выбросам угля и газа, суфлярным выделениям метана. Абсолютная

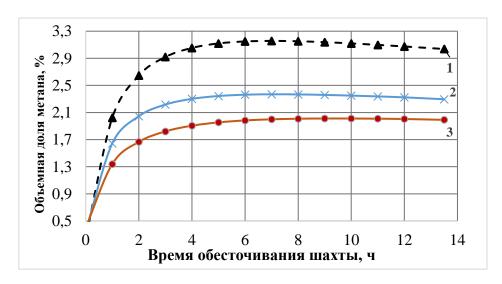
газообильность шахты составляет 41,15 $\text{м}^3/\text{мин}$; относительная — 34,09 $\text{м}^3/\text{т}$.

Обесточивание электроподстанции 05.10.2016, послужило возникновению аварийной ситуации (общешахтное отключение электроэнергии). В шахте находилось 126 человек.

На момент возникновения аварийной ситуации проветривание 2-й западной лавы пл. l_8 ' и лавы № 1 пл. l_8 ' осуществлялось по прямоточной схеме проветривания с частичным разбавлением вредностей, а 5-й восточной лавы пл. l_1 по возвратноточной схеме. Во всех выемочных участках применялась дегазация сближенных угольных пластов скважинами.

Для оценки газовой обстановки по исследуемым выемочным участкам шахты «Щегловская-Глубокая» составлена общая таблица с исходными данными (таблица 3.6).

Таблица 3.6 – Исходные данные для оценки газовой обстановки в выемочных участках при общем обесточивании шахты


	Выемочный участок								
Параметр	2-я западная лава	лава № 1 пл. <i>l</i> ₈ '	5-я восточная лава						
	пл. l_8 '	лава № 1 пл. 18	пл. l_1						
$Q_{\text{п.0}}, \text{ M}^3/\text{c}$	24,17	21,33	33,50						
$Q_{\pi,1}, {\rm M}^3/{\rm c}$	3,50	5,75	7,50						
$q_{\rm cn0}$, м ³ /с	0,26	0,23	0,25						
$q_{\rm cn1}, {\rm m}^3/{\rm c}$	0,09	0,10	0,11						
$C_{{\scriptscriptstyle { m B}0}},\%$	0,25	0,4	0,35						
$Q_{\rm B0},{\rm M}^{3}/{\rm c}$	3,83	3,67	3,67						
$Q_{\rm B1},{\rm M}^{3}/{\rm c}$	1,00	1,17	1,06						
$S_{\rm B}$, ${\rm M}^2$	55	55	55						
$l_{\rm cn}$, M	24	21	21						
$l_{\scriptscriptstyle m I}$, M	250	250	250						
<i>t</i> , ч	13,5	13,5	13,5						

В таблице 3.7 представлены результаты моделирования переходного газодинамического процесса в выемочных участках шахты «Щегловская-Глубокая» при общем обесточивании горного предприятия.

Таблица 3.7 – Результаты теоретического расчета газовой обстановки по выемочным участкам шахты «Щегловская-Глубокая» в результате общего обесточивания горного предприятия

Выемочный	Параметр		Время обесточивания, ч							
участок		0	1	2	4	6	8	10	13,5	
2 a ронониоа	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,26	0,52	1,05	1,57	2,09	2,62	3,53	
2 -я западная лава пл. l_8 '	$\zeta_{\scriptscriptstyle m B}$	0	1,20	1,62	1,90	1,96	1,97	1,94	1,90	
Лава IIЛ. 18	<i>C</i> , %	0,25	2,02	2,65	3,05	3,15	3,15	3,12	3,04	
	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,28	0,57	1,13	1,70	2,27	2,84	3,97	
Лава № 1 пл. <i>l</i> ₈ '	$\zeta_{\scriptscriptstyle m B}$	0	0,87	1,17	1,39	1,46	1,48	1,49	1,47	
	<i>C</i> , %	0,35	1,34	1,67	1,91	1,98	2,01	2,62 1,94 3,12 2,84	1,99	
	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,31	0,61	1,22	1,83	2,44	3,05	4,28	
5-я восточная	$\zeta_{\scriptscriptstyle m B}$	0	1,07	1,40	1,61	1,66	1,66	1,65	1,60	
лава пл. l_1	<i>C</i> , %	0,35	1,61	2,04	2,30	2,36	2,37	2,62 1,94 3,12 2,84 1,49 2,01 3,05 1,65	2,30	

По результатам теоретического расчета представим графическую зависимость роста объемной доли метана от продолжительности общего обесточивания шахты (рисунок 3.10).

1 – 2-я западная лава; 2 – 5-я восточная лава; 3 – Лава №1

Рисунок 3.10 — Результаты прогнозирования газовой обстановки в выемочных участках шахты «Щегловская-Глубокая» при общем обесточивании горного предприятия

В данном случае, интенсивность роста метановыделения на исходящей вентиляционной струе выемочных участков 2-й западной лавы пл. l_8 ' и лавы № 1 пл. l_8 ' наблюдается в течение первых 6-ти часов, а затем постепенная стабилизации до уровня выемочного участка без дегазации. Для выемочного

участка 5-й восточной лавы пл. l_1 интенсивный рост метановыделения наблюдается в течение первых 5-ти часов.

По оперативным данным, полученным в ходе ликвидации аварийной ситуации подразделениями ГВГСС МЧС ДНР, за первые три часа обесточивания шахты, на исходящей вентиляционной струе выемочного участка 2-й западной лавы пласта l_8^1 , объемная доля метана выросла с 0,35 до 3,25 %.

Для проверки адекватности разработанной математической модели переходных газодинамических процессов в выемочном участке при изменении параметров проветривания и дегазации, выполнено сопоставление оперативных (фактических) данных с результатами теоретического расчета (рисунок 3.11).

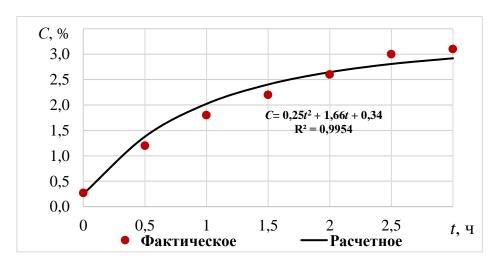


Рисунок 3.11— Динамика объемной доли метана на выемочном участке 2-й западной лавы пласта l_8 1 шахты «Щегловская Глубокая»

Сравнительный анализ (рисунок 3.11) показывает удовлетворительную сходимость результатов исследований. Относительная погрешность в максимальной точке отклонения фактических данных от расчетных значений (при t = 1,0 ч) не превышает 14 %.

3.4.3. Результаты оценки газовой обстановки на выемочном участке шахты им. А.А. Скочинского

Шахта им. А.А. Скочинского относится к категории опасных по внезапным выбросам угля и газа, суфлярным выделениям метана и

взрывчатости угольной пыли. В шахтном поле, вскрытом семью вертикальными стволами, разрабатывается одиночный незащищенный особо опасный по внезапным выбросам угля и газа пласт h^1_6 «Смоляниновский» мощностью 1,2...2,2 м и углом падения 8...18°. Абсолютная газообильность шахты с учетом каптируемого метана составляет 16,33 м 3 /мин, а относительная — 33,36 м 3 /т. Подготовка шахтного поля — панельная с прямым порядком отработки панелей. Способ проветривания шахты — всасывающий.

В результате повреждения линии 110 кВ 13.08.2022 произошло общешахтное отключение электроэнергии с нарушением проветривания выемочного участка 3-й восточной лавы УПЦП пласта h^1_6 и работы подземной дегазации. В шахте находилось 79 человек.

Проветривание 3-й восточной лавы УПЦП пласта h^1_6 осуществлялось по возвратноточной схеме проветривания (1-В-Н-в-вт). Эффективность подземной дегазации составляла порядка 40 %.

Для выполнения численных экспериментальных исследований по оценке газовой обстановки в выемочном участке 3-й восточной лавы УПЦП пласта h^1_6 принята фактическая компьютерная модель воздухораспределения шахты, разработанная в программной системе «РЕВОД» (рисунок 3.12) со следующими исходными данными: $Q_{\pi 0} = 14,05$ м³/с; $Q_{\pi 1} = 5,67$ м³/с; $q_{\text{сп}0} = 0,03$ м³/с; $q_{\text{сп}1} = 0,06$ м³/с; $Q_{\text{в}0} = 5,69$ м³/с; $Q_{\text{в}1} = 2,21$ м³/с; $C_{\text{в}0} = 0,19$ %; $S_{\text{в}} = 40$ м²; $l_{\text{сп}} = 20$ м; $l_{\pi} = 225$ м; t = 12 ч.

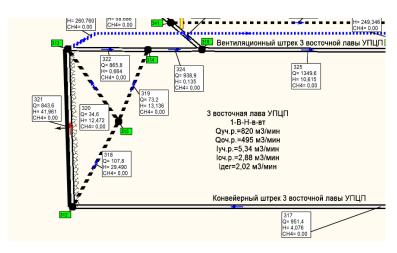


Рисунок 3.12 — Схема воздухораспределения по выемочному участку 3-й восточной лавы УПЦП пласта h^1_6

По формуле (2.78) определим необходимые параметры для исследования переходных газодинамических процессов (таблица 3.8).

Таблица 3.8 – Результаты моделирования газовой обстановки на выемочном участке 3-й восточной лавы УПЦП пласта h^1_6 при общем обесточивании шахты

Выемочный участок	Параметр		Время обесточивания, ч						
		0	0,5	1	1,5	2	2,5	3,0	
2 a posmovyvaa vopa	$ au_{\scriptscriptstyle \mathrm{B}}$	0	0,39	0,79	1,18	1,58	1,97	2,36	
3-я восточная лава УПЦП пласта h_6^1	$\zeta_{\scriptscriptstyle m B}$	0	0,36	0,58	0,72	0,80	0,86	0,90	
ymumacra n 6	C, %	0,19	0,26	0,40	0,40	0,43	0,45	0,47	

По результатам теоретического расчета представим графическую зависимость роста объемной доли метана от продолжительности общего обесточивания шахты (рисунок 3.13).

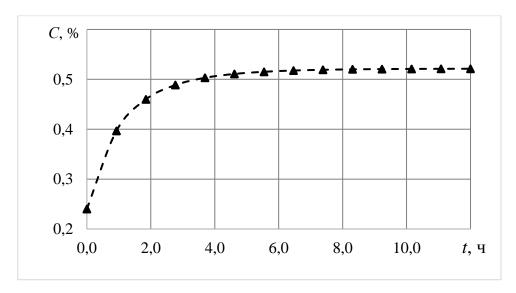


Рисунок 3.13 — Результаты прогнозирования газовой обстановки на выемочном участке 3-й восточной лавы УПЦП пласта h^1_6 при общем обесточивании шахты

Анализ полученных результатов показывает, что рост метановыделения на вентиляционном штреке 3-й восточной лавы пласта h^1_6 наблюдается в течение первых 4-х часов, а затем постепенная стабилизации до уровня абсолютного метановыделения выемочного участка без дегазации.

Через три часа после отключения электроэнергии, объемная доля метана на исходящей вентиляционной струе выемочного участка 3-й восточной лавы пласта h^1_6 выросла с 0,19 до 0,5 %.

На рисунке 3.14 представлены результаты фактических данных газовой обстановки в выемочном участке и результаты расчета. Определим среднюю величину относительного отклонения.

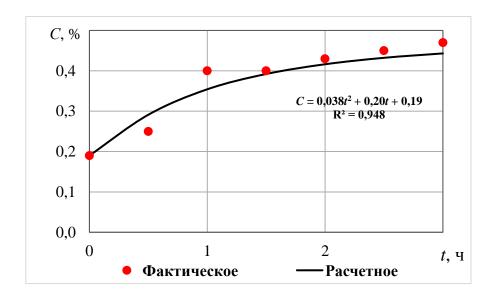


Рисунок 3.14 — Зависимость роста объемной доли метана в выемочном участке 3-й восточной лавы пласта $h^1{}_6$ от времени общего обесточивания шахты

Низкая интенсивность метановыделения на всем отрезке времени обусловлена ограничением подвигания забоя лавы (порядка 30 м/мес.) в связи с противовыбросными мероприятиями, что подтверждается результатами теоретического расчета.

Сравнительный анализ результатов исследований (рисунок 3.14) показывает, что средняя относительная погрешность отклонения фактических данных от расчетных значений не превышает 12 %.

Таким образом, результаты экспериментальных расчетов подтверждают адекватность предложенной математической модели, описывающей переходные газодинамические процессы в выемочных участках при изменении параметров проветривания и дегазации. Расхождения находятся в пределах относительной погрешности и обусловлены зависимостью результатов измерений.

3.5. Выводы к разделу 3

- 1. Установлено, что при использовании схем проветривания типа 1-В, 2-В, 3-В вынос метана рассредоточен и происходит на большой площади вентиляционной выработки протяженностью до 200 м, что снижает удельный вынос метана и делает данные схемы проветривания менее опасными по образованию местных скоплений. Для схем проветривания типа 1-М и 2-М вынос метана происходит концентрировано в тупик погашения вентиляционной выработки, и на ее сопряжение с лавой, что делает данные схемы проветривания наиболее опасными по образованию местных скоплений метана.
- 2. Выполнено математическое моделирование влияния режимов работы дегазационных скважин на метановыделение из сближенных угольных пластов в зонах их взаимодействия, расположенных по падению и простиранию разрабатываемого угольного пласта, что является основой для оценки газовой обстановки в выемочных участках шахт при изменении параметров работы систем дегазации и определении необходимого расхода воздуха для снижения содержания метана до предельно допустимых концентраций.
- 3. Разработана принципиальная схема вентиляционных соединений выработок и газопроводов для определения влияния газоотсоса на аэродинамические параметры выемочного участка, что позволяет определить направление движения воздуха и его расход по выработкам выемочного участка при компьютерном моделировании.
- 4. На основе данных анализа техногенных аварий шахт выполнены численные исследования газодинамики выемочных участков с отключением дегазации и изменением параметров проветривания, что позволяет оценить динамику образования опасных концентраций метана при ведении аварийноспасательных работ. Сравнение экспериментальных данных с расчетными значениями подтверждает адекватность разработанной математической модели, характеризующей переходные газодинамические процессы в выемочном участке при изменении параметров проветривания и дегазации. Средняя величина относительного отклонения по исследуемым выемочным участкам не превышает 14 %.

РАЗДЕЛ 4

РАЗРБОТКА РЕКОМЕНДАЦИЙ ПО ВЫБОРУ ПАРАМЕТРОВ ПРОВЕТРИВАНИЯ ВЫЕМОЧНЫХ УЧАСТКОВ ПРИ ОТКЛЮЧЕНИИ СИСТЕМ ДЕГАЗАЦИИ

4.1. Разработка метода прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении дегазации

Выполненный выше анализ методов оценки газовой обстановки в выемочных участках шахт при отключении систем дегазации (раздел 1.3) показал необходимость разработки достоверного метода прогноза, так как существующие методы не в полной мере позволяют спрогнозировать динамику метановыделения на исходящей вентиляционной струе выемочного участка и тем самым определить необходимый расход воздуха для безопасного ведения работ по ликвидации аварий и аварийных ситуаций.

На основе выполненных теоретических и численных экспериментальных исследований газодинамики в выемочных участках при дегазации сближенных угольных пластов разработан метод прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении дегазации (далее – Метод). В качестве основного параметра принято метановыделение при нормально работающей дегазации, а также расход метана, каптируемый дегазацией на выемочном участке.

Так как интенсивность роста метановыделения после отключения систем дегазации происходит по экспоненциальной зависимости и стабилизируется на уровне абсолютного метановыделения выемочного участка [22, 109], тогда прогноз абсолютного метановыделения на выемочном участке при отключении дегазации $I_{\text{отк}}$, м³/мин, определяем по формуле

$$I_{\text{отк}} = I_{\text{уч.},\text{д}} + \frac{I_{\text{д}}}{k_{\text{TP}}} \cdot \left(1 - e^{-a_{\Pi} \cdot t_{\text{д}}}\right), \tag{4.1}$$

Определяем коэффициент прироста метановыделения из сближенных угольных пластов, с учетом горно-геологических параметров выработанного пространства

$$a_{\Pi} = \frac{k_{\text{B}\Pi} x_{\text{max}}}{h_{\text{cp}}} \left[\frac{m_{\Pi\Pi} \sum m_i}{\sum m_i \left(1 - \frac{h_{\text{cp}}}{l_{\text{cH}}} \right)} \right], \tag{4.2}$$

где $k_{\text{вп}}$ – коэффициент увеличения метановыделения из выработанного пространства;

 $h_{\rm cp}$ — среднее расстояние от разрабатываемого до сближенных угольных пластов по нормали, м;

 x_{max} — расстояние от забоя лавы до зоны разгрузки сближенных угольных пластов, м;

 $m_{\rm i}$ — мощность дегазируемого *i*-го сближенного угольного пласта, м;

 $l_{\rm cn}$ – расстояние по нормали между разрабатываемым и сближенными угольными пластами [117], м.

Определяем коэффициент увеличения метановыделения из выработанного пространства в лаву после отключения дегазации по формуле

$$k_{\text{BII}} = \frac{I_{\text{BII}.A}}{I_{\text{VM},I}}.\tag{4.3}$$

Определяем абсолютное метановыделение из выработанного пространства после отключения дегазации $I_{\text{вп.д}}$, по формуле

$$I_{\text{вп.д}} = I_{\text{вп}} + \frac{I_{\text{д}}}{k_{\text{пр}}},$$
 (4.4)

где $I_{\text{вп}}$ – метановыделение из выработанного пространства при нормальной работе дегазации, м³/мин.

Определяем абсолютное метановыделение на выемочном участке после отключения дегазации по формуле

$$I_{\text{yq.}, \pi} = I_{\text{yq.}0} + \frac{I_{\pi}}{k_{\text{np}}}.$$
 (4.5)

Для определения расстояния от очистного забоя до зоны разгрузки сближенных угольных пластов определяем по формуле

$$x_{\text{max}} = 8,34 + 0,87 \cdot h_{\text{cp}}. \tag{4.6}$$

Определяем среднее расстояние по нормали между разрабатываемым и сближенным угольным пластом, когда метановыделение из последнего должно равняться нулю, по формуле [117]

$$h_{\rm cp} = 1, 3 \cdot l_{\rm oq.p} \cdot k_{\rm y.k} \cdot k_{\rm \pi} \cdot \sqrt{m_{\rm B}} \cdot (\cos \alpha_{\rm m\pi} + 0,05 \cdot k_{\rm \pi}),$$
 (4.7)

где $k_{\rm y.\kappa}$ — коэффициент, учитывающий способ управления кровлей. Принимается равным $k_{\rm y.\kappa}$ = 1,0 при полном обрушении кровли;

 k_{π} – коэффициент, учитывающий влияние степени метаморфизма на величину свода разгрузки, принимается по таблице 4.1 [117];

 $\alpha_{\text{пл}}$ – угол падения пласта, ... °.

Таблица 4.1 — Значение коэффициента, учитывающего влияние степени метаморфизма на величину свода разгрузки

Выход летучих веществ из пласта, %	2-8	8-12	12-18	18-26	26-35	35-40 и более
$k_{\scriptscriptstyle m II}$	1,8-1,6	1,6-1,5	1,5-1,35	1,35-1,2	1,2-1,0	1,0-0,91

При определении расстояния по нормали между разрабатываемым и сближенными угольными пластами, принимаем $l_{\text{оч.р}}$ в соответствии с [117].

В основу расчета взято усредненное значение метановыделения за период не менее одного месяца стабильной работы лавы и системы дегазации.

Расход метановоздушной смеси, отводимый дегазацией, является также постоянно контролируемым параметром и берется из «Книги учета работы дегазационных скважин». Коэффициент, учитывающий влияние дегазации на увеличение расхода каптируемого метана, определяем по формуле

$$k_{\text{вл}} = \frac{I_{\text{уч}} - I_{\text{уч}.\text{H}}}{I_{\text{vч}}},$$
 (4.8)

где $I_{y4}^{'}$ – абсолютное метановыделение на участке без дегазации, м 3 /мин.

Коэффициент, учитывающий прирост газовыделения из сближенных угольных пластов в результате дегазации, определяем по формуле

$$k_{\rm np} = \frac{1,06 - k_{\rm m}}{1.0 - k_{\rm m}},\tag{4.9}$$

 $k_{\rm д}$ – коэффициент эффективности дегазации, 1.

Коэффициент эффективности дегазации ($k_{\rm d}$) определяем согласно данным «Книги учета работы дегазационных скважин» или по [38, 117, 124].

Для определения параметров $I_{\text{уч.н}}$, $k_{\text{вл}}$, $I_{\text{д}}$ принимаем усредненные значения при расчете расхода воздуха и дегазации в период составления проекта отработки выемочного участка.

В качестве примера рассмотрим задачу определения прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении системы дегазации.

Исходные данные: $I_0 = 19,7$ м³/мин; $I_{\rm B\Pi} = 10,07$ м³/мин; $I_{\rm д} = 15,5$ м³/мин; $m_{\rm III} = 1,31$ м; $m_1 = 0,18$ м; $m_2 = 0,22$ м; $m_3 = 0,21$ м; $m_4 = 0,18$ м;; $l_{\rm оч.p} = 110$ м; $\alpha_{\rm III} = 6^{\rm o}$; расстояние от кровли пласта до i-го сближенного угольного пласта по нормали составляет: $H_1 = 18$ м; $H_2 = 24$ м; $H_3 = 33$ м; $H_4 = 40$ м; $h_{\rm cp} = 29$ м.

Решение.

1. Определяем расстояние по нормали между разрабатываемым и сближенными угольными пластами, при котором метановыделение из последнего практически равняется нулю по формуле (4.7)

$$H_p = 1.3 \cdot 110 \cdot 1.0 \cdot \sqrt{1.31} \cdot (0.9945 + 0.05 \cdot 1.0) = 172 \text{ M}.$$

2. По формуле (4.9) определяем коэффициент, учитывающий прирост метановыделения из сближенных угольных пластов ($k_{\rm np}$) при дегазации

$$k_{\rm np} = \frac{1,06-0,7}{1-0,7} = 1,2.$$

3. По формуле (4.4) определяем абсолютное метановыделение из выработанного пространства после отключения дегазации:

$$I_{\text{вп.д}} = 10,07 + \frac{15,5}{1.2} = 22,47 \text{ м}^3/\text{мин.}$$

4. По формуле (4.5) определяем абсолютное метановыделение на выемочном участке после отключения дегазации:

$$I_{\text{уч.д}} = 19,7 + \frac{15,5}{1.2} = 32,6 \text{ м}^3/\text{ мин.}$$

5. По формуле (4.3) определяем долю метановыделения из выработанного пространства после отключения дегазации

$$k_{\text{BII}} = \frac{22,47}{32,6} = 0,7.$$

6. По формуле (4.6) определяем расстояние от очистного забоя до зоны максимальной разгрузки сближенных угольных пластов

$$x_{\text{max}} = 8.34 + 0.87 \cdot 29 = 33.6 \text{ M}.$$

7. По формуле (4.2) определяем коэффициент а

$$a = \frac{0.7 \cdot 33.6}{29} \cdot \left[\frac{1.31 \cdot (0.18 + 0.22 + 0.21 + 0.18)}{0.18 \cdot \left(1 - \frac{18}{172}\right) + 0.22 \cdot \left(1 - \frac{24}{172}\right) + 0.21 \cdot \left(1 - \frac{33}{172}\right) + 0.18 \cdot \left(1 - \frac{40}{172}\right)} \right] = 1,27.$$

8. По формуле (4.1) определяем абсолютное метановыделение и его нарастание на выемочном участке при отключении дегазации

$$I_{\text{отк}} = 19,7 + \frac{15,5}{1,2} \cdot \left(1 - e^{-1,27 \cdot t_{\text{Д}}}\right).$$

Задаваясь значениями времени $t_{\rm д}$, определяем изменение метановыделения (таблица 4.2).

Таблица 4.2 – Динамика абсолютного метановыделения на выемочном участке при отключении дегазации

Параметр		Значение параметра при $t_{\text{д}}$, ч											
	0	0 0,25 0,5 0,75 1 2 3 4 5 6											
$I_{\text{отк}}$, м ³ /мин	19,7	23,2	25,8	27,7	28,3	31,6	32,3	32,5	32,6	32,6			

Для оперативного прогнозирования газовой обстановки на выемочном участке при отключении дегазации, разработана компьютерная программа (рисунок 4.1), которая производит вычисления по разработанному Методу. Данная программа включена в структуру программного комплекса «УАСПР», позволяющий решать широкий перечень задач при ведении горноспасательных работ на угольных шахтах [82].

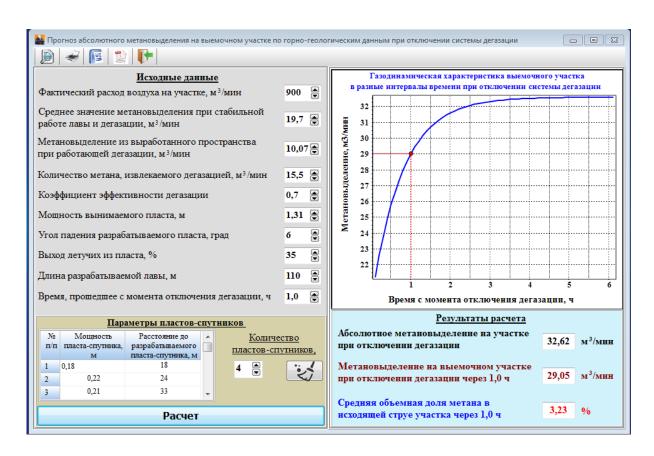


Рисунок 4.1 – Диалоговое окно программы прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении системы дегазации

После выполнения необходимых расчетов в компьютерной программе, на экран выводится график газодинамической характеристики выемочного участка в зависимости от продолжительности отключения дегазации. По результатам расчета можно определить необходимый расход воздуха для снижения опасных концентраций метана в исходящей вентиляционной струе, а также установить безопасное время для ведения аварийно-спасательных работ в условиях интенсивного метановыделения.

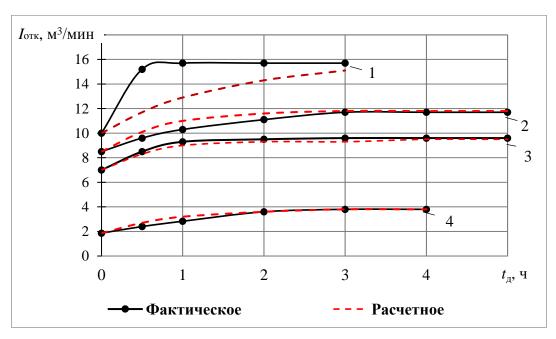
4.2. Апробация метода прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении дегазации

Для апробации разработанного Метода собраны данные экспериментов, проведенных исследователями в условиях выемочных участков шахт, применяющих системы дегазации [22, 23, 70, 109].

Экспериментальные исследования проводились на шахтах Донбасса, разрабатывающих пологие и наклонные угольные пласты. На экспериментальных выемочных участках устанавливались пункты наблюдений, в которых выполнялись замеры содержания метана и скорости движения вентиляционной струи воздуха. По данным замерам определялись дебиты воздуха и метана, проходящие через пункты наблюдений в определенные промежутки времени.

Выемочные участки, в которых лавы отрабатывались обратным ходом, пункты наблюдений устанавливались на исходящих вентиляционных струях лав, а участки, отрабатывающие угольные пласты по сплошной системе разработки — на исходящих вентиляционных струях лав и участков [23, 109].

В нерабочую смену, дегазация на выемочном участке отключалась путем перекрытия задвижки участкового дегазационного газопровода. Замеры расхода воздуха, проходящего по вентиляционному штреку, и концентрация метана в исходящей вентиляционной струе производилась с помощью анемометров и интерферометров.


Замеры начинались за один час до отключения дегазации и продолжались до стабилизации метановыделения в выработке после отключения дегазации на новом уровне.

В связи с этим, на основе данных горно-геологических и горнотехнических параметров экспериментальных выемочных участков, выполнены теоретические расчеты по разработанному Методу и сопоставлены с результатами шахтных измерений метановыделения при отключении дегазации. Полученные результаты обобщены и представлены в таблице 4.3.

Таблица 4.3 – Горно-геологическая и горнотехническая характеристика экспериментальных выемочных участков

№ п/п	Шахта, лава	Характ тин разраба емого г	ка атыва-		мочно	й балаі го учас мин		Характерис -тика сближен- ного пласта		-тика сближен- $ = \begin{bmatrix} M \end{bmatrix} $ Метановыделение на выемочном участке, $I_{\text{отк}}$, M^3 /мин при продолжительности отключения дегазации, $t_{\text{д}}$, ч								Среднее отклонение, %	
11/11		<i>т</i> пл, м	α, ^o	$I_{ ext{yч.д}},$	$I_{\mathrm{Д}}$	$I_{ m yq},$	$I_{\scriptscriptstyle m B\Pi}$	<i>т</i> і, м	<i>Н</i> і, м	Пар	0	0,5	1	2	3	4	5	6	Ср
	ш/у «Рассвет»,							0,49	15	$I_{ ext{OTK.} \varphi}$	6,5	9,6	11,8	13,9	16,7	18,2	18,6	18,6	
1	7-я зап. лава пл. <i>l</i> ₇	1,0	14	6,5	11,1	18,6	4,0	0,34 0,24	27 34	$I_{ m OTK.p}$	6,5	10,1	12,6	15,6	17,1	17,9	18,2	18,4	2,2
	ш/у «Рассвет»,			10			4.00	0,20	21	$I_{ ext{OTK.} oldsymbol{\varphi}}$	10,0	15,2	15,7	15,7	15,7	-	-	-	12.0
2	№ 3 вост. 1-й панели пл. <i>k</i> ₂	0,7	0	10	7,13	15,7	4,99	0,22	35	$I_{ m OTK.p}$	10	11,7	12,9	14,3	15,1	-	-	-	13,0
	ш. «Глубокая»,			1.01	• 40	•		0,20	45	$I_{ ext{OTK.} oldsymbol{\varphi}}$	1,86	2,4	2,83	3,6	3,8	3,8	-	-	
3	3-я зап. лава пл. <i>m</i> ₃	1,2	15	1,86	2,49	3,8	0,72	0,5	65	$I_{ m otk.p}$	1,86	2,7	3,2	3,6	3,8	3,8	-	-	3,7
4	ш. им. В.И. Ленина, 7-я	1,3	4	9,7	4,75	13,5	6,90	0,40	38	$I_{ ext{otk.} lacktrlambda}$	9,7	10,3	13	13,5	13,6	-	_	-	1,2
4	лава пл. l_4	1,3	4	9,7	4,73	13,3	0,90	0,27	73	$I_{ m OTK.p}$	9,7	11,6	12,6	13,4	13,5	-	_	-	1,4
5	ш. «Чайкино»,	1,6	3	10,1	8,84	17,4	5,70	0,25	26	$I_{ ext{otk.} oldsymbol{\varphi}}$	9,8	14,2	16,9	17,4	17,7	17,9	17,9	17,9	1,4
	коренная сев. лава пл. m_3	1,0	3	10,1	0,04	17,4	3,70	0,28	47	$I_{ m otk.p}$	9,8	13,7	15,7	17,3	17,4	17,4	17,4	17,4	1,4
	ш. им. М.И.	1.0	10	0.0	1.55	11.0	7 00	0,29	20	$I_{ ext{OTK.} \varphi}$	9,8	9,8	9,3	11,0	11,3	11,0	11,2	1	2.5
6	Калинина, 4-я зап. лава пл. h_{10}	1,3	12	9,8	1,75	11,2	5,99	0,3	29	$I_{ m OTK.p}$	9,8	10,2	10,5	10,9	11,2	11,3	11,4	-	2,6
7	ш. «Поченкова»	1 45	18	6.05	2 10	0.5	4,10	0,65	30	$I_{ ext{otk.} oldsymbol{\varphi}}$	7	8,5	9,3	9,5	9,6	9,6	9,6	ı	1.0
/	7-я вост. лава столба <i>m</i> ₃	1,45	18	6,95	3,19	9,5	4,10	0,75	42	$I_{ m otk.p}$	7	8,3	9,0	9,3	9,3	9,5	9,5	1	1,9
	ш. «Поченкова»	1.6	10	0.5	4.0	11.7	4.00	0,65	30	$I_{ m OTK.}$	8,5	9,6	10,3	11,1	11,7	11,7	11,7	-	2.7
8	5-я вост. лава столба <i>m</i> ₃	1,6	18	8,5	4,0	11,7	4,99	0,75	42	$I_{ m OTK.p}$	8,5	10,1	11,0	11,6	11,8	11,8	11,8	-	2,7

На рисунках 4.2 – 4.6 в графическом виде представлены результаты апробации разработанного Метода.

1-ш/у «Рассвет» (3-я восточная лава); 2-шахта им. К.И. Поченкова (5-я восточная лава); 3-шахта им. К.И. Поченкова (7-я восточная лава); 4-шахта «Глубокая» (3-я западная лава)

Рисунок 4.2 – Результаты прогноза газовой обстановки на выемочных участках шахт при отключении дегазации

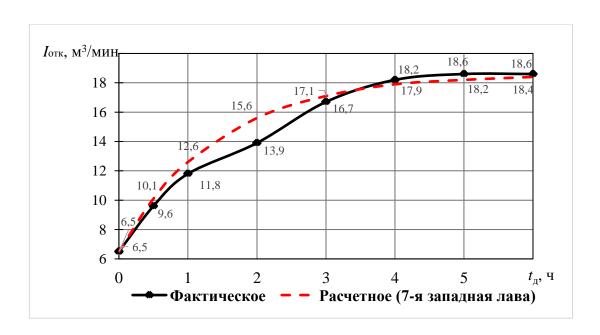


Рисунок 4.3 — Результаты прогноза газовой обстановки на выемочном участке 7-й западной лавы шахты «Рассвет» при отключении дегазации

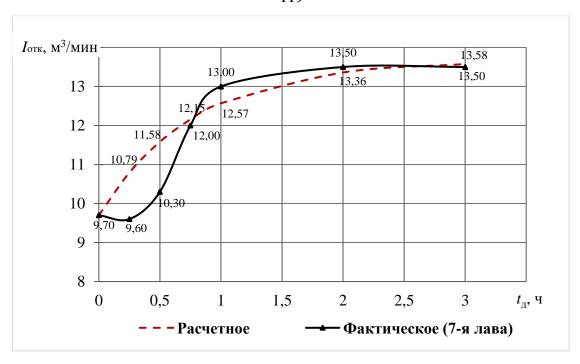


Рисунок 4.4 — Результаты прогноза газовой обстановки на выемочном участке 7-й лавы шахты им. В.И. Ленина при отключении дегазации

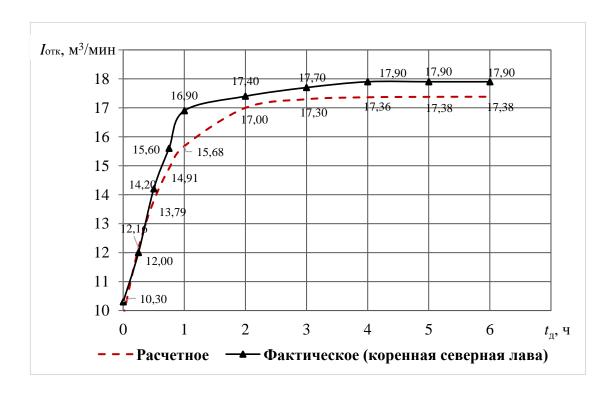


Рисунок 4.5 — Результаты прогноза газовой обстановки на выемочном участке коренной северной лавы шахты «Чайкино»

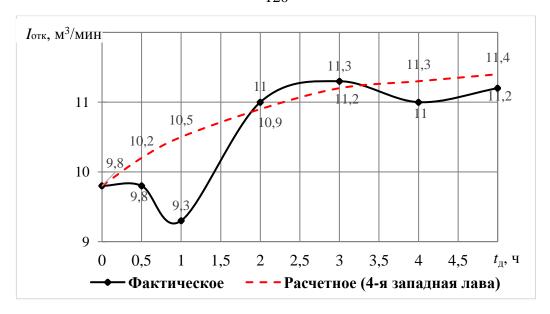


Рисунок 4.6 – Результаты прогноза газовой обстановки на выемочном участке 4-й западной лавы шахты имени М.И. Калинина при отключении дегазации

Таким образом, результаты газовой обстановки прогноза на экспериментальных выемочных участках при отключении дегазации, характеризуются удовлетворительной сходимостью с данными полученными в результате шахтных измерений и дают возможность оценить интенсивность нарастания метановыделения во времени с достаточной для практики точностью. Среднее относительное отклонение по исследуемым выемочным участкам не превышает 13 %.

4.3. Формирование резервов воздуха в шахтной вентиляционной сети при отключении систем дегазации

Одним из основных способов компенсации увеличения метановыделения на выемочном участке при отключении систем дегазации является увеличение подачи воздуха из резервных источников вентиляционной сети шахты.

Анализ состояния проветривания шахт и выемочных участков в первом разделе диссертационной работы показал, что рассматриваемые шахты Донецкой Народной Республики имеют достаточные резервы воздуха и возможность их подачи на выемочные участки для нормализации газовой обстановки.

Обеспечение безопасности ведения горных и горноспасательных работ может быть достигнуто за счет увеличения подачи дополнительного расхода воздуха на выемочный участок за счет:

- заранее заложенных резервов воздуха или внутренних резервов воздуха на выемочном участке при фактическом расходе воздуха в исходящей вентиляционной струе превышающим расчетный;
- наличия на исходящей или подсвежающей вентиляционных струях участка закрытых регуляторов расхода воздуха, открытие которых приводит к увеличению поступления воздуха на выемочный участок;
- снижения подачи воздуха на второстепенные объекты проветривания, расположенные в параллельных ветвях и имеющие сверхнормативную обеспеченность;
- регулирования режима работы ВГП, работающего на рассматриваемый выемочный участок путем перевода его режима работы на более высокую аэродинамическую характеристику;
 - совместной (параллельной) работы основного и резервного ВГП;
- применения турбулизаторов воздуха для ликвидации местных скоплений метана.

4.3.1. Формирование резервов воздуха на выемочных участках

Оценка внутренних резервов воздуха на выемочном участке производится по дополнительному метановыделению $I_{\text{доп}}$, которое может быть разбавлено фактически поступающим на выемочный участок воздухом, по следующей формуле

$$I_{\text{доп}} = \frac{\overline{Q}_{\text{уч}}(C_{\text{д}} - \overline{C}_{\phi})}{100}.$$
(4.10)

Средний фактический расход воздуха \overline{Q}_{yq} , поступающий на выемочный участок, при работающих дегазации и газоотсосе определяем по формуле

$$\overline{Q}_{yq} = \frac{\sum_{i=1}^{n_i} Q_{3i}}{n_i}, \tag{4.11}$$

где C_{π} – допустимая средняя объемная доля метана в исходящей вентиляционной струе выемочного участка, %;

 \overline{C}_{Φ} – средняя фактическая объемная доля метана в исходящей вентиляционной струе выемочного участка при нормальной работе системы дегазации, %;

 Q_{3i} – расхода воздуха в момент замера, м³/мин;

 $n_{\rm i}$ – число определений расхода воздуха.

Среднюю фактическую объемную долю метана в исходящей вентиляционной струе выемочного участка, определяем по формуле

$$\overline{C}_{\Phi} = \frac{\sum_{j=1}^{n_{j}} C_{j}}{n_{i}}, \tag{4.12}$$

где C_i — средняя объемная доля метана в исходящей струе выемочного участка (определяют по «Книге замеров метана»), %;

 $n_{\rm j}$ — число определений среднесуточной объемной доли метана в течении трех месяцев стабильной работы лавы.

При дополнительном метановыделении $I_{\text{доп}} \leq \Delta I_{\text{д}} + \Delta I_{\text{отс}}$ увеличивать расход воздуха на участке не требуется так как фактический расход воздуха на участке обеспечивает предельно допустимую концентрацию метана в исходящей струе.

При $I_{\text{доп}}\!\ge\!\Delta I_{\text{д}}+\Delta I_{\text{отс}}$ следует увеличить расход воздуха на выемочном участке $I_{\text{доп}}-\Delta I_{\text{д}}+\Delta I_{\text{отс}}.$

Увеличение расхода воздуха на выемочном участке путем изменения сопротивления регулятора расхода воздуха является эффективным способом по усилению его проветривания, особенно в том случае, когда сопротивление регулятора превышает сопротивление выработки, где он установлен. Установка регулятора расхода воздуха в ближайшей параллельной горной выработке приводит к увеличению расхода воздуха на выемочном участке от 20 до 35 %.

Раскрытие регулятора расхода воздуха может уменьшать общее аэродинамическое сопротивление выемочного участка от 4 до 10 раз [116, 130]. Расход воздуха в исходящей вентиляционной струе выемочного участка увеличится на 40 – 100 %. Практически поступление воздуха на выемочный участок при изменении сопротивления регулятора может быть определено путем шахтного эксперимента или расчетом вентиляционной сети на ПЭВМ.

При расчете на ПЭВМ составляется или используется действующая вентиляционная модель шахты, составленная по результатам депрессионной съемки. В компьютерную модель вносится изменения аэродинамических сопротивлений ветвей выработок, с установленным регулятором расхода воздуха.

В качестве временных регуляторов могут использоваться брезентовые или парашютные перемычки, противопожарные двери, действующие на этих объектах, регуляторы или специально установленные двери, открытые при нормальной работе.

Значение аэродинамического сопротивления выработки (ветви) с регулятором при его открытии $R_{\rm B}$, определяем по формуле

$$R_{\rm B} = R_{\rm Bp} - R_{\rm p} + R_{\rm ok},$$
 (4.13)

где $R_{вр}$ — аэродинамическое сопротивление выработки с регулятором (определяют по результатам депрессионной съемки), да $\Pi a \cdot c^2/M^6$;

 $R_{\rm p}$ – аэродинамическое сопротивление регулятора (определяют по результатам депрессионной съемки), да $\Pi a \cdot c^2/M^6$;

 $R_{\rm ok}$ – аэродинамическое сопротивление проема при открытом регуляторе расхода воздуха, да $\Pi a \cdot c^2/M^6$.

Аэродинамическое сопротивление проема при открытой двери регулятора определяют с помощью замеров или в соответствии с таблицей 4.4.

Таблица 4.4 – Аэродинамическое сопротивление проема открытого регулятора расхода воздуха для выработок различного сечения

Площадь		Аэроди	намичес	ское сог	іротивл	ение от	крытого	регуля	гора, да	Па·c²/м	⁶ , при	
поперечного				ПОП	еречном	и сечени	ии выра	ботки, м	1^2			
сечения	5	6	7	8	9	10	11	12	13	14	15	16
регулятора												
расхода												
воздуха, м ²												
1,3	63,7	67,9	71,0	73,4	75,2	76,7	78,0	79,0	80,0	80,7	81,4	82,0
1,5	41,6	54,1	47,6	49,5	51,1	52,3	53,4	54,2	55,0	55,6	55,2	56,7
2,0	19,8	22,2	24,0	25,4	26,5	27,4	28,1	28,7	29,3	29,7	30,1	30,5
3,0	6,0	7,3	8,4	9,2	9,9	10,4	10,9	11,3	11,6	11,9	12,2	12,4
3,8	0,7	1,7	2,6	4,8	5,3	5,7	6,0	6,3	6,6	6,8	7,0	7,2
5,0		1,2	1,6	2,0	2,3	2,6	2,8	3,0	3,2	3,3	3,5	3,6

После изменения аэродинамического сопротивления ветви с регулятором выполняется расчет воздухораспределения.

Полученное значение расхода воздуха ($Q_{\text{расч}}$), поступающего на участок при открытой двери регулятора, сравнивается с необходимым минимальным расходом воздуха (Q_{\min}).

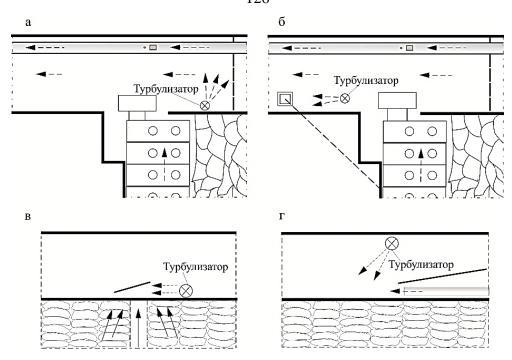
Если $Q_{\text{расч}} \ge Q_{\text{min}}$ (1,0 %), то на этом расчет заканчивается.

При $Q_{\text{расч}} \leq Q_{\text{min}}$ (2,0 %) определяем среднюю объемную доля метана $C_{\text{ср}}$, %, в исходящей вентиляционной струе выемочного участка по формуле

$$C_{\rm cp} = \frac{100(I_{\rm yq} + \Delta I_{\rm A})}{Q_{\rm non}},$$
 (4.14)

где $Q_{\text{доп}}$ – расход воздуха на выемочном участке после применения мероприятий по его увеличению, м³/мин.

Снижение подачи воздуха на второстепенные объекты проветривания (обособленно проветриваемые камеры, поддерживаемые выработки и т.п.) возможно при сверхнормативной их обеспеченности.


Оценку увеличения расхода воздуха эффективно выполнять предварительным расчетом вентиляционной сети на ПЭВМ, что позволит оперативно оценить газовую обстановку [97]. При этом наибольший результат, как правило, дают объекты с максимальной обеспеченностью, находящиеся в непосредственной близости от рассматриваемой лавы. Первоначальная величина дополнительного сопротивления, выставляемого в качестве регулятора расхода воздуха рекомендуется в пределах $4.0 - 5.0 \, \text{Па} \cdot \text{c}^2/\text{м}^6$ с дальнейшим уточнением.

Для эффективной борьбы с местными и слоевыми скоплениями метана используют специальные аэраторы или турбулизаторы воздуха (таблица 4.5) [121].

Таблица 4.5 — Характеристика параметров работы аэраторов и турбулизаторов воздуха

Параметр	Аэра	атор	Турбулизатор					
	«Ветерок» «Прохлада г -ПШ1»		ТПГ-1,5	ТПГ-3	ТПП-1,5	ТПП-3		
Расход воздуха, м ³ /с	1,5	1,5	1,5	3,0	1,5	3,0		
Длина факела, м при	13	13	13	25	12	17		
скорости > 1,0 м/с Давление, МПа	0,37	0,4	20,0	20,0	0,4	0,4		

В первую очередь необходимо использовать турбулизаторы воздуха в районах ведения ремонтных и аварийно-спасательных работ, где могут быть сосредоточенные источники метановыделения (тупики погашения вентиляционных выработок, сопряжения вентиляционных выработок с лавами, окна в бутовых полосах или изоляторах и т.п.). Основные схемы расположения турбулизаторов воздуха представлены на рисунке 4.7.

a-в тупиках погашения вентиляционных выработок и при сокращении газопровода; б – в местах бурения дегазационных скважин; в – в местах интенсивного выноса метана и у окон в бутовых полосах; г – у камер смешивания

Рисунок 4.7 – Основные схемы расположения турбулизаторов воздуха в местах возможного образования местных скоплений метана

Использование турбулизаторов воздуха для ликвидации местных скоплений метана наиболее эффективно, когда на выемочный участок подается необходимый расход воздуха, для разбавления всего объема метана.

Как ранее отмечалось в работе, увеличение подачи дополнительного расхода воздуха на выемочный участок после отключения системы дегазации может привести к резкому повышению метановыделения в верхней части лавы и на исходящей вентиляционной струе участка. Поэтому, ДЛЯ эффективного необходимо проветривания аварийного участка, определить максимально допустимый расход воздуха.

После выполнения мероприятий по обеспечению подачи дополнительного расхода воздуха, определяем коэффициент увеличения расхода воздуха на исходящей вентиляционной струе ($k_{\text{per,yq}}$) по формуле

$$k_{\text{per.yq}} = \frac{(C_{\text{d}} - C_0)Q_{\text{yq.0}}}{100I_{\text{ork}}} + 1, \tag{4.15}$$

где $Q_{ ext{yч.0}}$ – расход воздуха, поступающий на выемочный участок до отключения дегазации, м 3 /мин.

По результатам проведенных исследований газодинамики шахт, установлена зависимость скорости вентиляционной струи в лаве от площади поперечного сечения лавы и коэффициента увеличения расхода воздуха в лаве ($k_{\rm per.n}$). определяем параметр $k_{\rm per.n}$.

Задаваясь значениями фактической скорости вентиляционной струи в лаве (v_n) и площадью поперечного сечения лавы (S_n) , определяем по номограмме (рисунок 4.8) коэффициент увеличения расхода воздуха в исходящей вентиляционной струе из лавы $(k_{\text{per},n})$

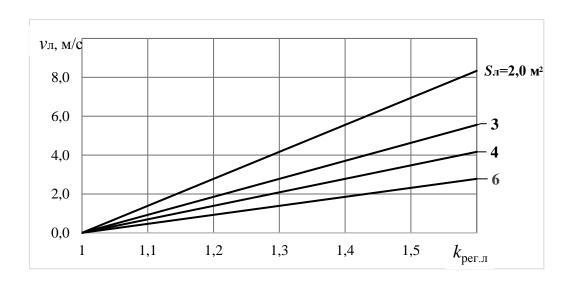


Рисунок 4.8 — Зависимость скорости вентиляционной струи в лаве от площади поперечного сечения лавы и коэффициента увеличения расхода воздуха

Из полученных значений $k_{\text{рег.уч}}$, и $k_{\text{рег.л}}$ выбирается наименьшее. Тогда максимально допустимый расход воздуха для безопасного проветривания аварийного участка (Q_{max}) определяется по формуле

$$Q_{\text{max}} = Q_{\text{yd},0} k_{\text{per},\text{yd}(\pi)}. \tag{4.16}$$

4.3.2. Формирование резервов воздуха на вентиляторах главного проветривания

При отсутствии внутренних резервов воздуха на участке определяют возможное увеличение расхода воздуха на выемочном участке за счет изменения углов установки лопаток рабочих колес (для осевых ВГП) или направляющего аппарата (для центробежных ВГП) вентилятора, проветривающего рассматриваемый участок.

В случае проветривания шахты с одной вентиляторной установкой подключение в работу резервного вентилятора позволяет увеличить подачу воздуха в шахту в среднем на $20-25\,\%$ [111]. При фланговых схемах проветривания шахт, подключение в работу резервных вентиляторов следует производить лишь на тех стволах, к которым поступает вентиляционная струя из аварийного участка.

Подать дополнительный резерв воздуха на выемочный участок можно за счет изменения аэродинамической характеристики работы ВГП, что определяют графическим методом или расчетом вентиляционной сети на ПЭВМ.

При графическом методе аэродинамическую характеристику вентиляционной сети берут из депрессионной съемки или определяют по параметрам работы ВГП. Аэродинамическое сопротивление вентиляционной сети $R_{\rm BC}$, да $\Pi a \cdot c^2/M^6$, определяем по формуле

$$R_{\rm BC} = \frac{H_{\rm B}}{O_{\rm R}^2},\tag{4.17}$$

где $H_{\rm B}$ – депрессия ВГП, даПа;

 $Q_{\rm B}$ – расход воздуха ВГП, м³/с.

На аэродинамическую характеристику ВГП наносится аэродинамическая характеристика вентиляционной сети $h_{\rm BC}$ (рисунок 4.9, кривая 1), задаваясь несколькими значениями расхода воздуха по формуле [116]

$$h_{\rm BC} = R_{\rm BC} Q_{\rm B}^2. \tag{4.18}$$

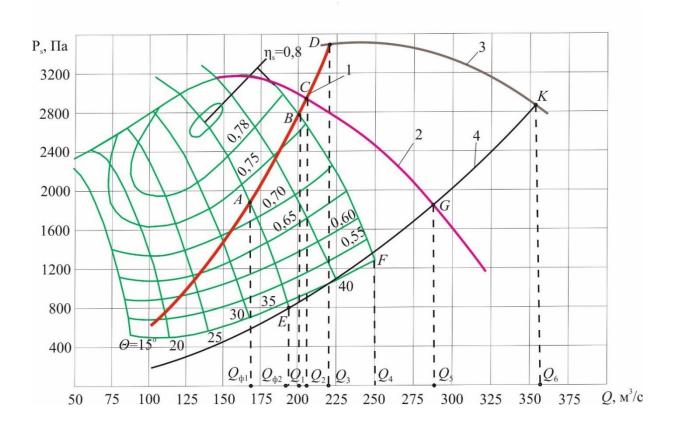


Рисунок 4.9 — Схема определения резерва воздуха при совместной работе рабочего и резервного вентиляторов главного проветривания

Используя аэродинамические характеристики ВГП и вентиляционной сети находим значение фактической подачи воздуха вентилятором. Для этого на ось абсцисс из точки пересечения характеристик (точка A) опускаем перпендикуляр и определяем фактическую подачу воздуха ВГП (точка $Q_{\phi 1}$). Из пересечения аэродинамической характеристики вентиляционной сети с максимальной аэродинамической характеристикой работы ВГП (точка B) опускаем на ось абсцисс второй перпендикуляр и определяем максимальную подачу воздуха ВГП (точка Q_1).

Резерв воздуха на ВГП (Q_{pes}), определяем по формуле

$$Q_{\text{pes}} = Q_{\text{max}} - Q_{\phi},\tag{4.19}$$

где Q_{max} – максимальный расход воздуха, подаваемый ВГП, м³/мин;

 Q_{Φ} – фактический расход воздуха, подаваемый ВГП, м³/мин.

Для определения резерва воздуха на выемочном участке используем коэффициент увеличения расхода воздуха $k_{\rm yB}$, который определяют по формуле

$$k_{\rm yB} = \frac{Q_1}{Q_{\rm dol}}.$$
 (4.20)

Расчет резерва воздуха на ВГП основан на том, что увеличение подачи воздуха во всех ветвях вентиляционной сети пропорционально изменению аэродинамической характеристики ВГП.

Для дополнительной подачи воздуха на выемочный участок может быть задействован (совместно) резервный ВГП. Резервный ВГП должен иметь такую же аэродинамическую характеристику, что и рабочий.

Фактический расход воздуха принимают из «Книги работы вентиляторов». Возможный расход воздуха определяем в результате построения совместной аэродинамической характеристики работы двух ВГП (рисунок 4.9, кривая 2). Для этого последовательно суммируем производительность рабочего и резервного ВГП при одинаковых депрессиях и находим точку пересечения суммарной аэродинамической характеристики ВГП с аэродинамической характеристикой вентиляционной сети (рисунок 4.9, кривая 1, точка *C*).

Опускаем из точки C перпендикуляр на ось абсцисс, находим максимальный расход воздуха (точка Q_2), подаваемого вентиляторами при их совместной работе. В случае недостаточной подачи воздуха рабочий и резервный ВГП переводят на совместную работу при максимальной их аэродинамической характеристике (рисунок 4.9, кривая 3) и из точки Dпересечения аэродинамической характеристики вентиляционной сети И совместной аэродинамической характеристике двух ВГП опускаем перпендикуляр на ось абсцисс, при этом получаем (точка Q_3) максимальный расход воздуха.

В данном случае дополнительный резерв воздуха на выемочном участке за счет изменения аэродинамических характеристик ВГП определяем по формуле

$$Q_{\text{pes}} = Q_3 - Q_{\phi 1}; \tag{4.21}$$

и соответственно

$$k_{\rm yB} = \frac{Q_3}{Q_{\oplus 1}},\tag{4.22}$$

где Q_3 – расход воздуха при совместной работе рабочего и резервного ВГП, м³/с;

Дополнительное поступление воздуха на выемочный участок при изменении режима работы ВГП ($Q_{\text{доп}}$), определяем по формуле

$$Q_{\text{ЛОП}} = k_{\text{VB}} \ Q_{\text{VY}}, \tag{4.23}$$

Тогда, расчетный расход воздуха при отключении систем дегазации на выемочном участке ($Q_{
m yu,p}$), определяем по формуле

$$Q_{yq.p} = \frac{100 (I_{yq} + \Delta I_{\pi} + \Delta I_{\Gamma}) k_{H}}{C_{\pi}}.$$
 (4.24)

При разных аэродинамических характеристиках работы ВГП и работе их на «крутую» характеристику вентиляционной сети (рисунок 4.9, кривая 1), в результате совместной работы ВГП могут иметь место сбросы депрессии. Более мощный ВГП будет забирать часть воздуха через менее мощный ВГП, а в шахту будет поступать воздуха меньше, чем, когда он работал один. То есть совместная работа ВГП может быть эффективной только при одинаковых аэродинамических характеристиках ВГП и пологой характеристике вентиляционной сети (рисунок 4.9, кривая 4).

Чем больше аэродинамическое сопротивление и «круче» характеристика вентиляционной сети, тем менее эффективна и устойчива совместная работа основного и резервного ВГП.

С целью уменьшения «всплесков» объемной доли метана рекомендуется применить плавное или ступенчатое регулирование расхода воздуха за три-пять приемов с интервалом, равным 10...30 мин. Мероприятия должны включать порядок, режим и способы введения резервов воздуха в действие.

4.4. Разработка алгоритма расчета газовой обстановки в выемочных участках при общем обесточивании горных предприятий

В разделе 2.3 разработана математическая модель переходного газодинамического процесса в выемочных участках шахт при изменении режимов вентиляции и дегазации. Получены дифференциальные уравнения и аналитические решения задачи.

При оценке газовой обстановки в горных выработках выемочного участка, требуется применение специально разработанной компьютерной программы, так как решение представлено в интегральном виде. Для практического и более удобного использования разработанной ранее математической модели теоретических зависимостей проанализируем параметры определим возможность представить решения в виде таблиц и графиков. С этой целью поделим математическую модель (2.78) на три части и запишем еще раз полученный ранее результат в безразмерном виде. Первую часть математической модели представим следующим образом

$$\overline{\zeta}_{\text{B1}} = 1 - \frac{1}{2} \left[\exp(\delta_{\text{B}})(\tau_{\text{B}} + 1) \operatorname{erfc}\left(\frac{\tau_{\text{B}} + 1}{2\sqrt{\tau_{\text{B}}/\delta_{\text{B}}}}\right) - (\tau_{\text{B}} - 1) \operatorname{erfc}\left(\frac{\tau_{\text{B}} - 1}{2\sqrt{\tau_{\text{B}}/\delta_{\text{B}}}}\right) \right], \quad (4.25)$$

Вторую часть математической модели представим в виде

$$\overline{\zeta}_{B2} = \frac{\tau_{B}}{2} \cdot \int_{0}^{1} \operatorname{erf}\left(\frac{\lambda}{2\sqrt{\tau_{B}}\overline{x}/\delta_{B}}\right) \times \left[\operatorname{erfc}\left(\frac{\tau_{B}(1-\overline{x})-1}{2\sqrt{\tau_{B}}(1-\overline{x})/\delta_{B}}\right) - \exp(\delta_{B})\operatorname{efrc}\left(\frac{\tau_{B}(1-\overline{x})+1}{2\sqrt{\tau_{B}}(1-\overline{x})/\delta_{B}}\right)\right] d\overline{x}.$$
(4.26)

Третью часть математической модели представим в виде

$$\bar{\zeta}_3 = -\frac{K_q - 1}{K_q - K_{Q_B}}. (4.27)$$

Объединив уравнения (4.25) – (4.27), имеем комплексный параметр $\zeta_{\rm B}$, характеризующий переходный газодинамический процесс в выемочном участке при изменении параметров вентиляции и дегазации

$$\zeta_{\rm\scriptscriptstyle B} = \bar{\zeta}_{\rm\scriptscriptstyle B1} - \bar{\zeta}_{\rm\scriptscriptstyle B3} \cdot \bar{\zeta}_{\rm\scriptscriptstyle B2}, \tag{4.28}$$

или

$$\zeta_{\rm B} = \frac{C_{\rm B}(l_{\rm I},t) - C_{\rm B}(l_{\rm I},0)}{C_{\rm B}(l_{\rm I},\infty) - C_{\rm B}(l_{\rm I},0)}.$$
(4.29)

Анализ зависимости (4.25) показывает, что параметр $\overline{\zeta}_{\text{в1}}$ содержит только две безразмерные величины – $\tau_{\text{в}}$ и $\delta_{\text{в}}$, имеющие вид:

$$\tau_{\rm B} = \frac{Q_{\rm B} l t}{S_{\rm D} l_{\rm B}}; \ \delta_{\rm B} = \frac{Q_{\rm B} l_{\rm B}}{S_{\rm D} D_{\rm B}}.$$
(4.30)

Величина τ_B для периода времени обесточивания шахты до суток составляет порядка 0...10. Для параметра δ_B применительно к шахтам Донбасса показывает, что его величина может быть принята $\delta_B = 2$. Поэтому первую часть уравнения (4.25) представим в виде графика (рисунок 4.10)

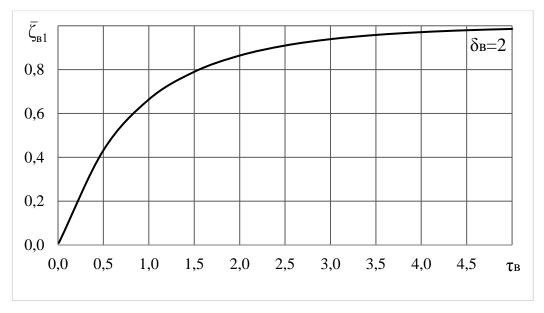


Рисунок 4.10 — Зависимость параметра $\overline{\zeta}_{_{\mathrm{B}1}}$ критерия гомохронности $\tau_{_{\mathrm{B}}}$

Второй член уравнения (4.26) тоже зависит от параметров $\tau_{\scriptscriptstyle B}$ и $\delta_{\scriptscriptstyle B}$, но еще и от параметра λ , имеющего вид

$$\lambda = \frac{l_{\text{cn}}}{l_{\text{n}}} \sqrt{\frac{D_{\text{B}}}{f}}.$$
 (4.31)

Анализ выражения (4.31) показал, что параметр λ для горно-геологических условий шахт Донбасса изменяется в пределах 0...1, причем величина $\lambda=0$ соответствует минимальному расстоянию до дегазируемого сближенного угольного пласта, а $\lambda=1$ — расстоянию примерно 50 м [77]. Таким образом параметр λ можно выразить упрощенной формулой

$$\lambda = 0.02 l_{\text{ch}}$$
. (4.32)

Поэтому член $\overline{\zeta}_{_{\rm B}2}$ выражения (4.26) может быть представлен семейством кривых (рисунок 4.11)

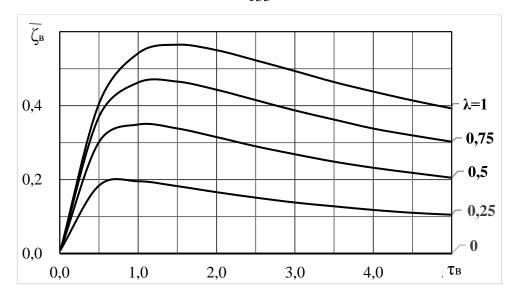


Рисунок 4.11 – Зависимость параметра $\bar{\zeta}_{_{\mathrm{B}2}}$ от безразмерного времени $\tau_{_{\mathrm{B}}}$

Сомножитель параметра $\bar{\zeta}_3$ зависит от отношений расходов воздуха по выемочному участку и каптажу метана из сближенных угольных пластов до и после обесточивания шахты, то есть:

$$K_q = \frac{q_{\text{cm1}}}{q_{\text{cm0}}} \; ; K_{Q_{\text{B}}} = \frac{Q_{\text{B1}}}{Q_{\text{B0}}} \; .$$
 (4.33)

Параметры K_q и K_{QB} для каждой шахты имеют свои значения, поэтому параметр $\bar{\zeta}_3$ всегда может быть определен.

Используя графики (рисунок 4.10 и рисунок 4.11) и определяя $\bar{\zeta}_3$ можно получить зависимость $\zeta_{\rm B}=f(\bar{\zeta}_{\rm B1}+\bar{\zeta}_3\cdot\bar{\zeta}_{\rm B2})$, то есть в безразмерном виде оценить динамику относительного метановыделения на выемочном участке после обесточивания горного предприятия.

В размерном виде объемную долю метана следует определять по следующей формуле

$$C_{\rm B} = \zeta_{\rm B} \left[C_{\rm B.T} - C_{\rm B0} \right] + C_{\rm B0}.$$
 (4.34)

Предлагается следующий алгоритм определения динамики метановыделения на выемочных участках шахт для конкретных условий:

- определяется параметр относительного времени $\tau_{\rm B} = f(t)$ для измененного режима проветривания $Q_{\rm B1}$ по формуле (4.30);
- для найденных величин $\tau_{\scriptscriptstyle B} = f(t)$ по графику (рисунок 4.10) определяется параметр $\overline{\zeta}_{\scriptscriptstyle B1}$;
- определяется параметр $\overline{\zeta}_{{}_{\mathrm{B}2}}$ по графику (рисунок 4.11) для заданного значения расстояния до сближенного угольного пласта и значений $\tau_{{}_{\mathrm{B}}} = f(t)$;
 - определяются значения K_q и K_{QB} по формуле (4.33);
 - определяется параметр $\bar{\zeta}_3$ по формуле (4.27);
 - определяется параметр $\zeta_{\rm B}$ по формуле (4.28);
- по формуле (4.34) определяется объемная доля метана в вентиляционном штреке при переходном режиме проветривания на выходе из зоны активного проветривания выработанного пространства.

Исследования переходного процесса проветривания лавы показали, что его длительность составляет всего 20...40 мин, а это намного меньше переходного процесса в выработанном пространстве. В связи с этим, величину $C_{\rm B}(l_{\rm I},\,\infty)$ определяем по следующей зависимости

$$C_{\rm\scriptscriptstyle B}(l_{\scriptscriptstyle \rm I}, \, \infty) = C_{\rm\scriptscriptstyle B}(l_{\scriptscriptstyle \rm I}, 0) \frac{Q_{\rm\scriptscriptstyle B}0}{Q_{\rm\scriptscriptstyle B}1}.$$
 (4.35)

В качестве примера рассмотрим задачу определения динамики объемной доли метана на вентиляционном штреке выемочного участка при обесточивании горного предприятия, если: $l_{\pi} = 200$ м; $Q_{\text{в0}} = 3 \text{ m}^3/\text{c}$; $Q_{\text{в1}} = 0.5 \text{ m}^3/\text{c}$; $q_{\text{сп0}} = 2.0 \text{ m}^3/\text{c}$; $q_{\text{сп1}} = 0.5 \text{ m}^3/\text{c}$; $l_{\text{сп}} = 30$ м; $l_{\text{в}} = 50 \text{ m}^2$; $l_{\text{c}} = 1.0 \text{ m}^3/\text{c}$.

Решение данной задачи состоит в следующем:

1. Определим критерий гомохронности $\tau_{\scriptscriptstyle B} = f(t)$ по формуле (4.30)

$$\tau_{\rm B} = \frac{Q_{\rm B} t}{S_{\rm B} t_{\rm B}} = \frac{0.5 \cdot t}{50 \cdot 200} = 0.5 \cdot 10^{-4} t.$$

Задаваясь временными интервалами обесточивания горного предприятия (*t*) определяем соответствующие критерии гомохронности (таблица 4.6)

Таблица 4.6 — Зависимость времени обесточивания горного предприятия от критерия гомохронности $\tau_{\scriptscriptstyle B}$

Время обесточивания t, с	7200	14400	21600	28800	36000	43200	50400
Критерий гомохронности τ _в	0,36	0,72	1,08	1,44	1,80	2,16	2,50

2. Для значений $\tau_{\scriptscriptstyle B}$ по графику (рисунок 4.10) определяем параметры $\overline{\zeta}_{\scriptscriptstyle B1}$ (таблица 4.7)

Таблица 4.7 – Зависимость параметра $\overline{\zeta}_{_{\mathrm{B}1}}$ от критерия гомохронности $\tau_{_{\mathrm{B}}}$

Критерий гомохронности $\tau_{\scriptscriptstyle B}$	0,36	0,72	1,08	1,44	1,80	2,16	2,50
Параметр $\overline{\zeta}_{{}_{\rm B}1}$	0,33	0,55	0,69	0,78	0,84	0,88	0,91

3. По графику (рисунок 4.11) находим параметр $\bar{\zeta}_{_{\rm B}2}$ для величины $l_{\rm cn}=30$ м и значений $\tau_{_{\rm B}}$ (таблица 4.8)

Таблица 4.8 – Зависимость параметра $\overline{\zeta}_{_{\mathrm{B}2}}$ от критерия гомохронности $\tau_{_{\mathrm{B}}}$

Критерий гомохронности τ _в	0,36	0,72	1,08	1,44	1,80	2,16	2,50
Параметр $\overline{\zeta}_{{}_{B}2}$	0,28	0,38	0,4	0,39	0,38	0,36	0,34

4. Определяем значения K_q и K_{Q_B} по формуле (4.33):

$$K_q = \frac{q_{\text{cn1}}}{q_{\text{cn0}}} = \frac{0.8}{2} = 0.4;$$
 $K_{Q_B} = \frac{Q_{\text{B1}}}{Q_{\text{B0}}} = \frac{0.5}{3} = 0.17.$

5. Вычисляем параметр $\bar{\zeta}_3$ по формуле (4.27)

$$\bar{\zeta}_3 = -\frac{K_q - 1}{K_q - K_{OB}} = -\frac{0.25 - 1}{0.4 - 0.17} = 2.57$$
.

6. По формуле (4.28), определяем параметр $\zeta_{\text{в}}$ и представим в табличном виде (таблица 4.9)

Таблица 4.9 – Зависимость параметра $\bar{\zeta}_{_{B}}$ от критерия гомохронности $\tau_{_{B}}$

Критерий гомохронности τ _в	0,36	0,72	1,08	1,44	1,80	2,16	2,50
Параметр $\overline{\zeta}_{\scriptscriptstyle B}$	1,06	1,53	1,72	1,79	1,81	1,81	1,79

7. Определяем объемную долю метана на выходе из зоны активного проветривания лавы по формуле (4.34) и изобразим в виде графика (рисунок 4.12)

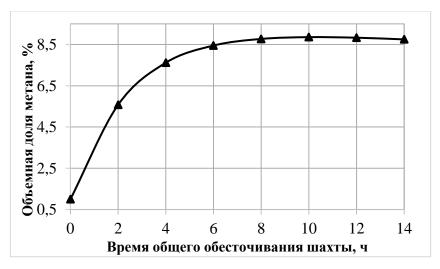


Рисунок 4.12 — Зависимость объемной доли метана от времени обесточивания горного предприятия

Таким образом, с помощью разработанного алгоритма расчета газовой обстановки в горных выработках выемочного участка при обесточивании горного предприятия, можно оперативно выполнить оценку динамики объемной доли метана на исходящей вентиляционной струе аварийного участка и достоверно определить необходимый расход воздуха для нормализации газовой обстановки при возобновлении подачи электроснабжения шахты, тем самым эффективно повлиять на ход ведения горноспасательных работ.

4.5. Оценка экономического эффекта от внедрения результатов работы

Экономический эффект от применения результатов диссертационной работы выполнен для угольных шахт, применяющих системы дегазации. Основан на определении предотвращенного ущерба от техногенных аварий, связанных с изменением параметров работы систем дегазации и выраженного в денежной форме.

В соответствии с [124] режим работы дегазационной системы и проветривание выемочного участка, где проложены дегазационные трубопроводы, определяют в соответствии с проектом дегазации шахты.

Проведенный анализ пожаров на угольных шахтах, применяющих системы дегазации в период с 2010 г. по 2021 г., показал, что в связи с уменьшением общего количества обслуживаемых шахт, наблюдается тенденция снижения общего количества экзогенных пожаров (таблица 4.10).

Таблица 4.10 – Динамика и общий причиненный ущерб от экзогенных пожаров, связанных с воспламенением и взрывом метана в угольных шахтах за период с 2010 по 2021 гг.

Год	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Итого
Количество экзогенных пожаров на шахтах с дегазацией	4	4	2	4	5	2	1	1	0	0	4	0	27
Ущерб от пожаров, тыс. рос. руб.	104181	846282,2	512790,5	754579,8	43872,1	8199,3	3709,3	5,6	0,0	0,0	1896,7	0,0	2275516,5
Средний ущерб на один пожар, тыс. рос. руб.	26045,3	211570,6	256385,3	188644,9	8774,4	4099,7	3709,3	5,6	1	1	474,2	-	84278,4

В 2021 году на 8 шахтах находилось в работе 11 выемочных участков, которые применяют следующие способы управления метановыделением:

- дегазация выработанного пространства (1 выемочный участок);
- дегазация скважинами из действующих выработок (9 выемочных участков);
- отвод метана осуществляется по неподдерживаемым горным выработкам
 (1 выемочный участок).

При выполнении профилактических обследований работниками ГВГСС, выявлены нарушения, в следствие которых не выполняются проектные решения по отводу расчетного метановыделения:

Пожары, вызванные воспламенением метановоздушной смеси, способны нанести угольным шахтам существенные материальные убытки (таблица 4.11).

Таблица 4.11 – Сведения о подземных экзогенных пожарах в угольных шахтах, связанных с воспламенением метановоздушной смеси, в период с 2010 по 2021 г.

Шахта	Дата начала аварии	Дата окончания аварии	Общий ущерб от аварии, тыс. рос. руб	В том числе потери добычи, тыс. рос. руб
им. А.Г. Стаханова	17.03.10	20.03.10	7172,5	5313,0
«Красноармейская- Западная» № 1	30.03.10	30.03.10	5151,3	4985,0
«Красноармейская- Западная» № 1	10.06.10	11.06.10	5186,0	5005,0
«Комсомолец Донбасса»	29.06.11	01.07.11	49056,0	26568,5
«Степная»	23.07.11	25.07.11	12614,0	8568,0
«Комсомолец Донбасса»	14.04.13	01.05.13	7653,2	3454,0
«Бутовская»	23.02.14	26.02.14	360,5	310,4
Южнодонбасская № 3	18.06.14	19.06.14	1151,4	980,6

Выполним расчеты возможного предотвращения пожара от применения положений разработанных Рекомендаций.

Согласно [85] к І категории отнесены подземные пожары, ликвидированные вспомогательных горноспасательных команд использованием первичных средств пожаротушения, без вызова горноспасательных подразделений. Для категорий II-IV относят подземные пожары, ликвидированные работниками ГВГСС при участии членов вспомогательных горноспасательных команд. При этом ко ІІ категории отнесены подземные пожары, ликвидированные активным способом, а к III-IV категории – с использованием подземной изоляции и от величины материального ущерба (IV категория – подземные пожары с ущербом свыше 10 млн рос. руб.).

В соответствии с [85, с. 5], расчет определяем по формуле:

$$\beta_{\Gamma} = \begin{cases}
(C_{i1} + E_{H}K_{i1})A_{i1_{Hac}} \frac{\overline{P}_{1} + E_{H}}{P_{2} + E_{H}} + \frac{(\sum_{i=1}^{n} M_{i1}^{'} - M_{i2}^{'}) - E_{H}(K_{2}^{1} - K_{1}^{1})}{P_{2} + E_{H}} + \frac{\partial_{\text{Hac}}^{\text{aB}} N_{\text{пож}}}{(P_{2} + E_{H})S_{\text{of}}} - (C_{2} + E_{H}K_{2})A_{2_{Hac}}
\end{cases} + A_{2}^{1}, \quad (4.36)$$

где Э_г – годовой экономический эффект, рос. руб.;

 C_{i1} – текущие затраты при базовом варианте, рос. руб.;

 $E_{\rm H}$ — коэффициент эффективности капитальных вложений, $E_{\rm H}$ = 0,15;

 K_{i1} – капитальные затраты при базовом варианте, рос. руб.;

 $A_{i1\text{Hac}}$ — необходимый объем мероприятий по выбору и установлению параметров проветривания выемочных участков при отключении систем дегазации, ед.;

 \overline{P}_1 – доля отчислений от балансовой стоимости на полное восстановление;

 P_2 — то же для разработанных Рекомендаций;

 $\sum_{i=1}^{n} H_{i1}^{'}$ — годовые эксплуатационные издержки потребителя при использованиях им нормального режима проветривания выемочного участка в расчете на один обслуживаемый объект, рос. руб.;

 $\dot{U_2}$ — то же при применении новых параметров проветривания выемочных участков, рос. руб.;

 K_2^1, K_1^1 — сопутствующие капитальные вложения потребителя при использовании базовых и новых параметров проветривания выемочных участков в расчете на один обслуживаемый объект, рос. руб.;

 $\mathfrak{I}^{\mathrm{ab}}_{\mathrm{hac}}$ — экономия текущих и капитальных затрат, связанных с аварийновосстановительными работами, в расчете на одну аварию, рос. руб., определяем по формуле

$$\mathcal{J}_{\text{\tiny Hac}}^{\text{\tiny AB}} = \left[M(U_1^{\text{\tiny T}}) + E_{\text{\tiny H}} M(U_1^{\text{\tiny K}}) \right] - \left[M(U_2^{\text{\tiny T}}) + E_{\text{\tiny H}} M(U_2^{\text{\tiny K}}) \right], \tag{4.37}$$

где $M(U_1^{\mathrm{\scriptscriptstyle T}}), M(U_2^{\mathrm{\scriptscriptstyle T}})$ — математическое ожидание текущих затрат, связанных с аварийно-восстановительными работами, при использовании базовых и новых параметров проветривания выемочных участков, рос. руб.;

 $M(U_1^{\kappa}), M(U_2^{\kappa})$ – то же для капитальных затрат, рос. руб.;

 $N_{\text{пож}}$ — среднегодовое количество пожаров на обслуживаемых объектах, ед.;

 $S_{\text{об}}$ – общее количество объектов, подлежащих обслуживанию, ед.;

 C_2 – текущие затраты при новом варианте, рос. руб.;

 K_2 – капитальные затраты при новом варианте, рос. руб.;

 $A_{2\text{нас}}$ — необходимый объем работ по установлению параметров проветривания выемочных участков при отключении систем дегазации на рассматриваемом объекте при новом варианте, ед.;

 A_2^1 – количество обслуживаемых объектов, ед.

Применительно к теме диссертации нет необходимости связывать расчет экономического эффекта с внедрением на обслуживаемом объекте новых параметров проветривания, так как ранее на этих объектах его не применяли. Поэтому экономический эффект рассматриваем как снижение ущерба от возможных пожаров. Тогда (4.36) принимает вид:

$$\mathcal{F}_{\Gamma} = \frac{\mathcal{F}_{\text{\tiny Hac}}^{\text{\tiny AB}} N_{\text{\tiny ПОЖ}} A_2^1}{(P_2 + E_{\text{\tiny H}}) S_{\text{\tiny O}}}.$$
(4.38)

Математическое ожидание ущерба от возможного пожара определяем по формуле

$$M(U_j) = \sum_{i=1}^{n} P_{ij} \overline{U}_{ij},$$
 (4.39)

где P_{ij} , \overline{U}_{ij} — вероятность развития пожара до i-й категория (i=1...4) при использовании j-го режима проветривания выемочного участка в случае отключении системы дегазации (j = 1,2 соответственно для вновь примененного проветривания с новыми параметрами) и средний ущерб от одного пожара i-й категория, руб., соответственно.

Для базового варианта математическое ожидание ущерба определяем по формуле (рассматриваем пожары II-IV категорий)

$$M(U_1) = P_{21}\overline{U}_{21} + P_{31}\overline{U}_{31} + P_{41}\overline{U}_{41}.$$
 (4.40)

Математическое ожидание ущерба от возможного пожара без изменения режима проветривания выемочного участка, определяем по формуле

$$M(U_2) = P_{22}\overline{U}_{22} + P_{32}\overline{U}_{32} + P_{42}\overline{U}_{42}. \tag{4.41}$$

В связи с тем, что среднегодовое количество пожаров по рассматриваемой группе объектов, как для существующего, так и для нового режима проветривания остается неизменным и равным фактическим значениям.

Поэтому
$$\overline{U}_{i1} = \overline{U}_{i2}$$
 для $i = 2...4$.

Сокращение ущерба происходит за счет перераспределения вероятности локализации пожаров между II категорией и категориями осложнившегося пожара (III-IV).

Значение математического ожидания ущерба при использовании Рекомендаций определяем из выражения

$$M(U_2) = (1 - \beta^{II}) P_{21} \overline{U}_{21} + (1 - \beta^{II}) P_{31} \overline{U}_{31} + (1 - \beta^{II}) P_{41} \overline{U}_{41}, \qquad (4.41)$$

где β^{II} — вероятность события, состоящего в том, что пожар, относившийся к III-IV категориям, локализуется на стадии активного тушения (II категория).

Значения P_{22} , P_{32} , P_{42} определяли с учетом того, что $\sum_{i=2}^n P_{i2} = 1$, а также сохранения пропорциональности числа пожаров II-IV категорий по формулам

$$P_{22} = (1 - \beta^{II}) P_{21};$$

$$P_{32} = (1 - \beta^{II}) P_{31};$$

$$P_{42} = (1 - \beta^{II}) P_{41}.$$
(4.42)

Вероятность того, что возникший пожар будет потушен в начальной стадии и не выйдет за пределы II категории, руководствуясь положениями Рекомендаций, рассчитываем по формуле

$$P_{22} = P_{\rm B3}^{\rm pek}$$
, (4.43)

где $P_{\text{вз}}^{\text{рек}}$ – вероятность выполнения задачи по активному тушению пожара.

Расчет ожидаемых ущербов.

Распределение экзогенных пожаров, возникших на выемочных участках за период $2010-2020\ \Gamma$, вероятности их возникновения и значения ущербов приведены в таблице 4.12.

Таблица 4.12 — Экзогенные пожары на выемочных участках шахт за период $2010-2020\ \Gamma.$

Показатель	Значения показателя			Итого
Категория тяжести	II	III	IV	-
Количество пожаров	5	8	14	27
Ущерб от пожаров, тыс. рос. руб.	1901,8	55780,7	2217833,6	2242059,5
Средние ущербы, тыс. рос. руб.	380,4	6972,6	158416,7	83039,2
Вероятность	0,19	0,29	0,52	1,0

Математическое ожидание ущерба от одного пожара при базовом варианте определяли по формуле (4.40)

$$M(U_1) = 0.19 \cdot 38.4 + 0.29 \cdot 6972.6 + 0.25 \cdot 158416.7 = 41698.5$$
 тыс. рос. руб.

Удельный вес текущих затрат в общей сумме затрат на аварийновосстановительные работы в соответствии [85, с. 15] $\gamma_m = 0,1$. Тогда:

$$M(U_1^T) = 0,1 \cdot 41698,5 = 4169,85$$
 тыс. рос. руб.;

$$M(U_1^{\kappa}) = (1-0,1) \cdot 41698, 5 = 37527, 65$$
 тыс. рос. руб.

Вероятность β^{II} , определяем по формуле:

$$\beta^{\text{II}} = \frac{P_{22} - P_{21}}{1 - P_{21}} = \frac{0.95 - 0.19}{1} = 0.76;$$

$$P_{32} = (1 - \beta^{\text{II}}) P_{31} = (1 - 0.29) \cdot 0.30 = 0.12;$$

$$P_{42} = (1 - \beta^{\text{II}}) P_{41} = (1 - 0.94) \cdot 0.52 = 0.031.$$

Поскольку
$$\bar{U}_{21}$$
 = \bar{U}_{22} ; \bar{U}_{32} = \bar{U}_{31} , то \bar{U}_{42} = \bar{U}_{41} .

$$M(\overline{U}_2)=0,95\cdot380,9+0,017\cdot6972,6+0,031\cdot158416,7=5391,3\ \text{тыс.рос.руб.};$$

$$M(U_2)=0,1\cdot5361,3=536,13\ \text{тыс.рос. руб.};$$

$$M(U_2^{\scriptscriptstyle K})=(1-0,1)\cdot5361,3=4825,02\ \text{тыс.рос. руб.}$$

Результаты расчета экономического ущерба от пожаров при базовом и новом варианте приведены таблице 4.13.

Таблица 4.13 – Экономический ущерб от пожаров на выемочных участках

	Категория тяжести последствий			Математическое	
Показатель	II	III	IV	ожидание ущерба	
				от одного пожара,	
				тыс. рос. руб.	
Базовый вариант					
Вероятность	0,19	0,29	0,57	-	
Ущерб от пожара,	380,4	6972,6	158416,7	83039,2	
тыс. рос. руб.	300,4	0972,0	130410,7	83039,2	
Новый вариант					
Вероятность	0,95	0,12	0,031	-	
Ущерб от одного	380,4	6972,6	158416,7	5391,3	
пожара, тыс. рос. руб.	300,4	0912,0	130410,7	3391,3	

При общем количестве действующих шахт, применяющих системы дегазации $N_{\rm III}=8$ и выемочных участков с дегазацией $S_{\rm of}=11$ ед. принимаем, что в среднем в год Рекомендации используют на 6-ти выемочных участках. Тогда $A_2^1=6$.

Среднегодовое количество подземных пожаров в выработках выемочных участков по данным таблицы $4.10 \ N=27/10=3,0.$

Исходные данные для расчета годового экономического эффекта от применения Рекомендаций представлены в таблице 4.14

Таблица 4.14 – Исходные данные для расчета годового экономического эффекта3

Показатель	Обоз-	Ед.	Базовый	Новый
Показатель	начение	изм.	вариант	вариант
Доля отчислений от балансовой стоимости на полное восстановление (реновацию) изделий	P_1, P_2	-	-	0,15
Нормативный коэффициент эффективности капитальных вложении	$E_{\scriptscriptstyle \mathrm{H}}$	-	-	0,15
Текущие затраты на восстановительные работы, связанные с ликвидацией последствий одного пожара	$M(U_1^{\scriptscriptstyle{\mathrm{T}}})$ $M(U_2^{\scriptscriptstyle{\mathrm{T}}})$	тыс. рос. руб.	4169,85	625,48
Капитальные затраты на аварийновосстановительные работы, связанные с ликвидацией последствий одного пожара	$M(U_1^{\kappa})$ $M(U_2^{\kappa})$	тыс. рос. руб.	37527,65	7130,25
Среднегодовое количество пожаров	$N_{\text{пож}}$	ед.	3,0	3,0
Число защищаемых объектов	\mathcal{S}_{of}	ед.	11	11
Число объектов, рассчитанное исходя из годового объема их профилактического обследования	A_2^1	ед.	-	27

Годовой экономический эффект от применения Рекомендаций в угольных шахтах составит

$$\mathcal{J}_{\Gamma} = \frac{\left[M(\boldsymbol{U}_{1}^{\mathrm{T}}) + \boldsymbol{E}_{\scriptscriptstyle{\mathrm{H}}} M(\boldsymbol{U}_{1}^{\scriptscriptstyle{\mathrm{K}}})\right] - \left[M(\boldsymbol{U}_{2}^{\scriptscriptstyle{\mathrm{T}}}) + \boldsymbol{E}_{\scriptscriptstyle{\mathrm{H}}} M(\boldsymbol{U}_{2}^{\scriptscriptstyle{\mathrm{K}}})\right]}{P_{2} + \boldsymbol{E}_{\scriptscriptstyle{\mathrm{H}}}} \frac{N}{S_{\scriptscriptstyle{\mathrm{o}6}}} \boldsymbol{A}_{2}^{1} =$$

$$=\frac{\left[4169,85+0,15\cdot37527,65\right]-\left[625,48+0,15\cdot7130,25\right]}{0.15+0.15}\cdot\frac{3}{11}=7367,23\;\;\text{тыс. рос. руб.}$$

На одну шахту составит
$$\mathcal{G}_{\Gamma}^{\text{ш}} = \frac{\mathcal{G}_{\Gamma}}{N_{\text{ш}}} = \frac{7367,23}{8} = 920,91$$
 тыс. рос. руб.

Экономический эффект от результатов проведенных исследований состоит в том, что на основании внедрения Рекомендаций в горноспасательные подразделения может быть уменьшено количество аварийных ситуаций, повлекших возникновению сложных и затяжных аварий, и тем самым снижена вероятность возникновения опасных производственных факторов, влияющих на жизнь и здоровье горноспасателей.

4.6. Выводы к разделу 4

- 1. Разработан метод прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении систем дегазации, учитывающий основные факторы влияющие на процесс нарастания метановыделения в исходящей вентиляционной струе выемочного участка.
- 2. Результаты апробации метода прогноза абсолютного метановыделения хорошо согласуются с экспериментальными данными, ранее полученными при отключении дегазации на выемочных участках шахт с различной интенсивностью метановыделения (от 1,9 до 18,6 м³/мин), что позволяет с достаточной для точностью практики спрогнозировать абсолютное метановыделение зависимости от продолжительности отключения дегазации. Средняя величина относительного отклонения ПО исследуемым выемочным участкам не превышает 13 %.
- 3. Увеличение расхода воздуха на выемочном участке при отключении дегазации может привести к резким «всплескам» метановыделения на исходящей вентиляционной струе участка. Поэтому, установлена зависимость скорости вентиляционной струи от коэффициента увеличения дополнительного расхода воздуха на выемочном участке, площади поперечного сечения горных выработок выемочного участка и создавшейся на аварийном участке газовой обстановки.
- 4. На основе разработанной математической модели, характеризующей переходный газодинамический процесс при изменении параметров работы вентиляции и дегазации разработан алгоритм оценки газовой обстановки в выемочных участках шахт и получены графические зависимости относительных концентраций метана от характерных критериев подобия.
- 5. Обоснованы факторы экономической эффективности практического применения результатов диссертационного исследования. Годовой экономический эффект от внедрения в горноспасательные подразделения Рекомендаций заключается в предупреждении шахт от подземных пожаров при отключении систем дегазации, и составляет порядка 7,3 млн рос. руб.

ЗАКЛЮЧЕНИЕ

Диссертация является законченной научно-квалификационной работой, в которой на основании выполненных исследований дано решение актуальной научно-технической задачи в обосновании параметров проветривания выемочных участков, применяющих системы дегазации на основе установления закономерностей формирования газовой обстановки при их отключении для обеспечения пожарной и промышленной безопасности угольных шахт. Работа базируется на основе анализа ранее проведенных шахтных экспериментов, расчетов и теоретических исследований.

Основные результаты выполненных исследований сводятся к следующему:

- 1. Анализ существующих методов оценки газовой обстановки в выемочных участках при отключении систем дегазации показал, что в них не учитываются основные параметры, влияющие на интенсивность метановыделения из выработанного пространства, и имеют значительные расхождения при расчетах (26 % и более) в сравнении с фактическими данными.
- 2. Разработана математическая модель процесса истечения метана в дегазационную скважину при различных режимах фильтрации от создаваемого разрежения в дегазационной сети. Получено решение начально-краевой задачи, которое позволяет определить величину дебита метана в дегазационную скважину и в выработанное пространство.
- 3. Разработана математическая модель динамики объемной доли метана в горных выработках выемочного участка при изменении расхода воздуха и дебита метана с учетом фильтрации газов в породах кровли выработанного пространства, коэффициентов пьезопроводности массива пород и диффузии метана, что позволило определить необходимый расхода воздуха для проветривания выемочного участка и нормализации газовой обстановки.
- 4. Разработана компьютерная модель работы газоотсасывающего вентилятора ВМЦГ-7М для возвратноточной схемы проветривания выемочного участка с разделением утечек воздуха через выработанное пространство на два

потока, что позволило достоверно (расхождение с данными депрессионной съемки не превышают 2 %) определить воздухораспределение по выработкам выемочного участка, расход воздуха в исходящей струе выемочного участка, направление его движения в тупике погашения, а также поступление воздуха из выработанного пространства в лаву при работе и остановке газоотсасывающего вентилятора.

- 5. Определены основные резервы воздуха в вентиляционных сетях шахт и обоснованы параметры подачи дополнительного расхода воздуха на выемочные участки, что позволило повысить безопасность ведения горноспасательных при ликвидации аварий и аварийных ситуаций на системах дегазации.
- 6. Разработан и включен в Рекомендации метод прогноза абсолютного метановыделения на выемочном участке по горно-геологическим данным при отключении систем дегазации.
- 7. Разработан алгоритм оценки газовой обстановки в выемочном участке при изменении режима работы вентиляции и дегазации, вследствие общего обесточивания шахты.
- 8. Разработаны и утверждены Рекомендации (приказ МЧС ДНР от 15.10.2018 № 324). Внедрение в горноспасательные подразделения МЧС ДНР Рекомендаций позволяет обеспечить эффективную и безопасную работу горноспасательных подразделений при отключении систем дегазации и получить от этого годовой экономический эффект, составляющий более 7 млн рос. руб.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абрамов, Ф.А. Автоматизация проветривания шахт [Текст] / Ф.А. Абрамов, В.А. Бойко. К.: «Наукова думка», 1967. 312 с.
- 2. Абрамов, Ф.А. Методы и средства управления газовыделением на выемочных участках шахт в период нестационарных процессов [Текст] / Ф.А. Абрамов, Б.Е. Грецингер, Г.А. Шевелев, В.В. Соболевский. К.: «Наукова думка», 1973. С. 4-24.
- 3. Агафонов, А.В. Условия образования местных скоплений метана на сопряжениях лав с вентиляционными выработками [Текст] / А.В. Агафонов, А.И. Бобров, Е.П. Захаров, И.Н. Попов // Уголь Украины. 2004. № 7. С. 30-31.
- 4. Агеев, В.Г. Закономерности формирования взрывоопасной среды в горных выработках при газодинамических явлениях [Текст] / В.Г. Агеев, И.Н. Зинченко // Вестник Науч. центра по безопасности работ в угольной промсти: науч.-техн. журн. Кемерово, 2013. № 1-2. С. 30-37.
- 5. Агеев, В.Г. Математическая модель газодинамических процессов при техногенных авариях в шахтах вследствие их обесточивания [Текст] / В.Г. Агеев, С.П. Греков, А.В. Мавроди // Научный Вестник НИИГД «Респиратор»: науч.-техн. журн. 2022. N 2 (59). C. 47-57.
- 6. Айруни, А.Т. Дегазация выработанных пространств [Текст] / А.Т. Айруни, Е.И. Духовный, Ю.В. Деев. М.: ЦНИЭИуголь, 1976. 57 с.
- 7. Айруни, А.Т. Дегазация смежных угольных пластов-спутников [Текст]/ А.Т. Айруни., А.М. Морев и др. М.: ЦНИЭИуголь, 1975. 102 с.
- 8. Айруни, А.Т. Дегазация угольных шахт за рубежом [Текст] / А.Т. Айруни, Е.И.Слепцов. М.: ЦНИЭИуголь, 1973. 81 с.
- 9. Айруни, А.Т. Разработка угольных пластов на большой глубине за рубежом: обзор [Текст] / А.Т Айруни., Е.И. Слепцов. М.: ЦНИЭИуголь, 1980. 49 с.
- 10. Алейникова, Г.М. Влияние разрежения на работу скважин при дегазации выработанного пространства [Текст] / Г.М. Алейникова, И.Н. Линденау //

- Безопасность труда в угольных шахтах. 1972. С. 76-81.
- 11. Анализ аварий и горноспасательных работ на предприятиях, обслуживаемых подразделениями ГВГСС за 2020 год. Донецк, 2021. 139 с.
- 12. Анциферов, А.В. Газоносность и ресурсы метана угольных бассейнов Украины. Т.1. Геология и газоносность западного, юго-западного и южного Донбасса [Текст] / А.В. Анциферов, А.А. Голубев, В.А. Канин и др.; УкрНИГИ НАН Украины. Донецк: Изд-во «Вебер», 2009. 456 с.
- 13. Балинский, Б.В. Область применения газоотсасывающих вентиляторных установок [Текст] / В.Б. Балинский, А.Я. Погребная // Техника безопасности, охрана труда и горноспасательное дело. М.: ЦНИЭИуголь, 1983. № 3. С. 10-11.
- 14. Бессонов, Ю.В. Особенности газового режима выемочных участков при прекращении дегазации [Текст] / Ю.В. Бессонов. // Техника безопасности, охрана труда и горноспасательное дело. М.: ЦНИЭИуголь, 1970. № 7 8. С. 16-17.
- 15. Бобров, А.И. Борьба с местными скоплениями метана в выработках угольных шахт [Текст] / А.И. Бобров, Б.В. Балинский. Экспресс информация. М.: ЦНИЭИуголь, 1981. Вып. 8. 34 с.
- 16. Бобров, А.И. Борьба с местными скоплениями метана в угольных шахтах [Текст] / А.И. Бобров. М.: Недра, 1988. 150 с.
- 17. Бобров, А.И. Местные скопления метана в подготовительных выработках угольных шахт [Текст] / А.И. Бобров, В.М. Шейко, Э.Н. Теличко. Донецк: Донбасс, 1972. 60 с.
- 18. Бобров, А.И. Опасность метановых слоев у кровли горных выработок, скоплений газа у бутовых полос в вентиляционных штреках и скорости воздуха, необходимой для их размывания [Текст] / А.И. Бобров, В.М. Шейко // Труды МакНИИ, том XX, М.: Недра, 1969. С. 62-71.
- 19. Болбат, И.Е. Аварийные вентиляционные режимы в угольных шахтах [Текст] / И.Е. Болбат, В.И. Лебедев, В.А. Трофимов. М.: Недра, 1992. 206 с.
- 20. Болбат, И.Е. Оценка устойчивости проветривания горных выработок при пожаре [Текст] / И.Е. Болбат, И.Н Зинченко // Разработка месторождений полезных ископаемых. К., 1982. N = 62. C. 116-119.

- 21. Большинский, М.И. Газодинамические явления в шахтах [Электронный ресурс] / М.И. Большинский, Б.А. Лысиков, А.А. Каплюхин. Севастополь: Вебер, 2003. 283 с. URL: http://bergmaster. narod.ru/techno-lit/2003_gdj-v-schahtah.pdf (дата обращения: 07.06.2022).
- 22. Бродский, В.Ш. Изменение газовой обстановки на выемочном участке при отказах дегазационных систем [Текст] / В.Ш. Бродский, В.К. Колюпанов, Н.Ф. Криворучко, С.А. Турилин // Технология очистных работ на угольных шахтах, разрабатывающих тонкие пласты. Донецк: ДонУГИ, 1980. С. 187-192.
- 23. Бродский, В.Ш. Определение безопасного времени остановки дегазационной системы [Текст] / В.Ш. Бродский, В.К. Колюпанов // Безопасность труда в промышленности. -1984. -№ 3. C. 48-49.
- 24. Брюханов, А.М. Расследование и предотвращение аварий на угольных шахтах. Часть 1 [Текст] / А.М. Брюханов, В.И. Бережинский, К.К. Бусыгин [и др.]. Донецк: Донбасс, 2004. 548 с.
- 25. Бунько, Т.В. Принципы построения кластерной модели выработанного пространства выемочного участка метанообильной угольной шахты [Текст] / Т.В. Бунько, И.Е. Кокоулин, С.А. Головко [и др.] // Геотехническая механика: межвед. сб. науч. тр. / ИГТМ им. Н.С. Полякова НАН Украины. Днепропетровск, 2014. Вып. 117. С. 141-152.
- 26. Вентцель, Е.С. Прикладные задачи теории вероятностей [Текст] / Е.С. Вентцель, Л.А Овчаров. М.: Радио и связь, 1983. 116 с.
- 27. Воронов, П.С. Интенсивность изменения метановыделения на выемочных участках при отключении систем дегазации [Текст]/ П.С. Воронов, Н.В. Карнаух, А.В. Мавроди // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2017, №4 (54). С. 60-69.
- 28. Ганюков, А.А. Математическое моделирование процесса диффузии и кинетики массопереноса веществ в различных средах [Электронный ресурс] // А.А. Ганюков, Кадырова И.А., Кадыров А.С., Маратов Д.Д. // Международный журнал прикладных и фундаментальных исследований − 2021. − № 4 − С. 86-91. − URL: https://applied-research.ru/ru/article/view?id=13208 (дата обращения: 15.06.2022).

- 29. Голинько, В.И. Вентиляция шахт и рудников [Электронный ресурс]: учеб. пособие / В.И. Голинько, Я.Я. Лебедев, О.А. Муха. Д.: Национальный горный университет, 2012. 266 с. URL: https://www.geokniga.org/bookfiles/geokniga-ventilyaciya-shaht-i-rudnikov.pdf (дата обращения: 06.06.2021).
- 30. Голубева, О.В. Курс механики сплошных сред [Текст]. М.: «Высшая школа». 1972, С. 42-44.
- 31. Греков, С.П. Истечение метана из частиц угля [Текст] / С.П. Греков, Б.И. Кошовский, М.В. Илык и др. // Горноспасательное дело: сб. науч. тр. НИИГД. Донецк, 2002. С. 74-88.
- 32. Греков, С.П. Истечение метана из частиц угля [Текст] / С.П. Греков, Б.И. Кошовский, М.В. Илык, И.Н. Смоланов // Горноспасательное дело: Сб. науч. тр. / НИИГД. Донецк, 2002. С. 74-88.
- 33. Греков, С.П. Математическое моделирование переходных газодинамических процессов в участке при изменении режима дегазации [Текст] / С.П. Греков, В.Ю. Горб, И.Н. Зинченко // Горноспасательное дело: Сб. науч. тр. / ВНИИГД. Донецк, 1975. Вып. 10. С. 54-60.
- 34. Греков, С.П. Моделирование переходных газодинамических процессов на добычных участках при изменениях режимов дегазации и вентиляции / С.П. Греков, И.Н. Зинченко, А.Л. Иванников [Текст] // Вестник Харьковского национального университета. Харьков, 2011. № 960. С. 95-103.
- 35. Грядущий, В.Б. Предотвращение взрывов и вспышек метана в тупиках погашения вентиляционных выработок [Текст] / В.Б. Грядущий, Е.Я. Самойленко // Уголь Украины. 2006. № 3. С. 36-38.
- 36. Гулько, С.Е. Влияние дегазации на метановыделение из сближенных пластов [Текст] / С.Е. Гулько, А.В. Мавроди // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2021. № 3(58) С. 42-49.
- 37. Дегазация смежных угольных пластов-спутников [Текст]: обзор. М.: ЦНИЭИуголь, 1975. 97 с.
- 38. Дегазация угольных шахт. Требования к способам и схемы дегазации [Текст]: СОУ 10.1.00174088.001-2004: утв. и введ. в действие Министерством

- топлива и энергетики Украины 17.11.2004. Киев, 2004. 162 с.
- 39. Денисенко, В.П. Выбор структуры нейросети для прогнозирования метановыделения в горных выработках угольных шахт [Текст] / В.П. Денисенко, Р.В. Верба, Е.В. Абакумова // Научный вестник НГУ. Днепроперовск, 2008. N 10. С. 15-20.
- 40. Ералин, Н.Е. Изменение газовыделения из выработанного пространства после прекращения или возобновления дегазации [Текст] / Н.Е. Ералин // Техника безопасности, охрана труда и горноспасательное дело. − 1969. − № 5. − 32 с.
- 41. Ералин, Н.Е. Исследование и определение основных параметров дегазации сближенных пластов и выработанных пространств на примере шахт, отрабатывающих пласты «Вышесредний» и «Слоистый» [Текст]: автореф. дис. ... канд. техн. наук: 05.311 / Ералин Нукаш Ералинович. Караганда, 1970. 24 с.
- 42. Ефремов, И.А. Комплексная дегазация угольных пластов и их спутников в шахтах [Текст] / И.А. Ефремов // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». Донецк, 2012. Вып. 49. С. 36-45.
- 43. Заключение экспертной комиссии по расследованию причин аварии с групповым несчастным случаем, происшедшей в горных выработках участка восточной уклонной лавы № 3 пласта m_3 ПАО «Шахта им. А.Ф. Засядько» 04.03.2015 в 05 ч 25 мин.
- 44. Звягильский, Е.Л. Схемы и способы управления газовыделением на выемочных участках угольных шахт [Текст] / Е.Л. Звягильский, Б.В. Бокий, О.И. Касимов, Н.В. Карнаух Н.В. и др. Макеевка: Ротапринт МакНИИ, 2006. 78 с.
- 45. Зинченко, И.Н. Аналитическое описание переходных газодинамических процессов в выемочном участке при закорачивании вентиляционной струи [Текст] // Горноспасательное дело: Сб. науч. тр. / ВНИИГД. Донецк, 1974. Вып. 8. С. 36-40.
- 46. Иванов, Ю.А. Математическая модель и методы экстраполяции изменения содержания метана на выемочных участках [Текст] / Ю.А. Иванов // Форум горняков 2007. Днепропетровск, 2007. Т.1. С. 92-100.

- 47. Инструкция по применению дегазации при пожарах в шахтах [Текст] / А.Л. Романчук, Г.М. Алейникова, Н.И. Привалов и др. М.: Минуглепром СССР, 1980. 75 с.
- 48. Исследовать состояние проветривания шахт, дегазационных систем и выемочных участков и расчеты вентиляционных режимов [Текст]: отчет о НИР (промежуточ.): 11611043 / НИИГД «Респиратор»: рук. Пашковский П.С. Донецк, 2016. 95 с.
- 49. Кабанов, Е.И. Анализ причин взрывов, вспышек и воспламенений метана в угольных шахтах России в 2005 2019 гг. [Электронный ресурс] / Е.И. Кабанов, Г.И. Коршунов, А.В. Корнев, В.В. Мяков // Горный информационно-аналитический бюллетень. 2021. № 2-1. с. 18-29. URL: https://cyberleninka.ru/article/n/analiz-prichin-vzryvov-vspyshek-i-vosplameneniy-metana-v-ugolnyh-shahtah-rossii-v-2005-2019-gg (дата обращения 12.09.2022).
- 50. Каледина, Н.О. О влиянии режима проветривания участка на эффективность дегазации выработанного пространства [Текст] / Н.О. Каледина // Научные основы создания высокопроизводительных комплексно механизированных и автоматизированных шахт: Науч. тр. МГИ. М., 1977. Вып. 10. С. 105-107.
- 51. Каледина, Н.О. Управление газовыделением из выработанных пространств угольных шахт [Электронный ресурс]: автореф. дис. ... д-ра. техн. наук: 05.26.01 / Каледина Нина Олеговна. М.: Изд-во МГГУ, 1995. 33 с. URL: https://search.rsl.ru/ru/record/01000125429 (дата обращения: 03.04.2020).
- 52. Каледина, Н.О. Обоснование параметров систем вентиляции высокопроизводительных угольных шахт [Текст] / Н.О. Каледина // Горный информационно-аналитический бюллетень (ГИАБ), отд. вып. № 7. М.: Изд-во «Горная книга», $2011.-C.\ 261-271.$
- 53. Карагодин, Л.Н. Современные способы проветривания и борьбы с газом на шахтах. обзор [Текст] / Л.Н. Карагодин, А.А. Мясников. М.: ЦНИЭИуголь, 1981. 38 с.
 - 54. Карнаух, Н.В. Влияние газоотсасывающей установки на распределение

- воздуха в выемочных участках [Текст] / Н.В. Карнаух, А.В. Мавроди, В.В. Захлебин // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2017. N = 4(54) C. 42-50.
- 55. Карнаух, Н.В. Газовоздушная обстановка на сопряжении лав в зависимости от утечек воздуха [Текст] / Н.В. Карнаух, С.П., Шутов // Технология отработки тонких угольных пластов на шахтах Донбасса. Донецк: ДонУГИ, 1988. С. 90-94.
- 56. Касимов, О.И. Зависимость газовыделения из подрабатываемых угольных пластов от режима их дегазации [Текст] / О.И. Касимов, Н.И. Антощенко // Научные сообщения. ИГД им. А.А. Скочинского, 1979. Вып. 183. С. 31-35.
- 57. Касимов, О.И. Оценка параметров переходных газодинамических процессов на выемочных участках шахт [Текст] / О.И. Касимов, Р.Э. Капиев // Борьба с газом и пылью на угольных шахтах. Донецк: Донбасс, 1965. Вып. 2, С. 3-13.
- 58. Касимов, О.И. Проветривание выемочных участков при столбовой системе разработки [Текст] / О.И. Касимов, Б.В. Бокий, А.В. Агафонов, А.И. Бобров // Уголь Украины. -2004. -№ 12. C. 44-46.
- 59. Касимов, О.И. Проветривание выемочных участков при столбовой системе разработки [Текст] / О.И. Касимов, М.И. Верзилов // Уголь Украины. 1977. N = 1. C. 40-42.
- 60. Касимов, О.И. Эффективность изолированного отвода метана из выработанных пространств по неподдерживаемым горным выработкам [Текст] / О.И. Касимов, И.Н. Попов // Борьба с газом, пылью и выбросами на угольных шахтах. Макеевка: Донбасс, 1971. Вып.7. С. 27-33.
- 61. Касимов, О.И. Изолированный отвод метана из выработанного пространства с помощью вентилятора [Текст] / О.И. Касимов, Б.В. Балинский, В.И. Тибабишев, Э.А. Итин // Уголь Украины. 1969. № 1. С. 40-41.
- 62. Кацауров, И.Н. Механика горных пород [Текст] / И.Н. Кацауров // М.: Недра, 1981.-160 с.
- 63. Клебанов, Ф.С. Аэродинамическое управление газовым режимом в шахтных вентиляционных сетях [Текст] / Ф.С. Клебанов М.: Наука, 1974. 136 с.

- 64. Клебанов, Ф.С. Влияние выработанных пространств на аэрогазодинамические режимы шахт [Текст]: автореф. дис. канд. техн. наук / Клебанов Феликс Семенович. М.: Акад. наук СССР. Ин-т горного дела, 1958. 17 с.
- 65. Клебанов, Ф.С. Об управлении газовыделением из выработанного пространства [Текст] / Ф.С. Клебанов // Уголь, − 1957. № 10. С. 7-8.
- 66. Клебанов, Ф.С. Переходные газовые режимы в угольных шахтах при резком изменении аэродинамических параметров [Текст] / Ф.С. Клебанов // Рудничная аэрология и безопасность условий труда в шахтах. Научные сообщения ИГД им. А.А. Скочинского. М.: Недра, 1969. С. 8-22.
- 67. Козловский, Б. Прогнозирование метановой опасности в угольных шахтах [Электронный ресурс] / Перевод с пол. В.Г. Рыжкова и Н.И. Устинова. Москва: Недра, 1975. 153 с. URL: https://search.rsl.ru/ru/reco-rd/01006986263 (дата обращения: 03.19.2022).
- 68. Костенко, В.К. Особенности динамики газовых смесей в трещиноватом горном массиве [Текст] / В.К. Костенко, Е.Л. Завьялова // Горный информационно-аналитический бюл. Тематическое приложение «Аэрология». М.: Изд-во МГГУ, 2005. С. 134-143.
- 69. Кременчуцкий, Н.Ф. Аналитическое обоснование параметров дегазации сближенных пластов [Текст] / Кременчуцкий Н.Ф., Бескровный В.И. и др. // Известия ВУЗов. Горный журнал. 1990. № 12. С. 66-69.
- 70. Кузьмин, Д.В. О метановыделении из выработанного пространства на выемочном участке [Текст] / Д.В. Кузьмин, А.И. Бобров, Б.Н. Иотенко, В.Ш. Бродский // Уголь Украины. 1998. № 3. С. 27-29.
- 71. Лебедев, В.И. Повышение устойчивости проветривания схем уклонных полей с двумя исходящими струями [Текст] / В.И. Лебедев // Горноспасательное дело: Сб. науч. тр. / ВНИИГД. Донецк, 1974. Вып. 8. С. 29-32.
- 72. Лидин, Г.Д. Борьба со скоплениями метана в угольных шахтах [Текст] / Г.Д. Лидин, А.Т. Айруни, Ф.С. Клебанов, Н.Н. Матвиенко. М: Госгортехиздат, 1961. 144 с.

- 73. Лидин, Г.Д. Исследование закономерностей дегазации разрабатываемых, подрабатываемых пластов [Текст] / Г.Д. Лидин, А.Т. Айруни, Ю.И. Бессонов [и др]. М.: ИФЗ им. О.Ю. Шмидта АН СССР, 1969. Вып. 183. С. 71-72.
- 74. Лидин, Г.Д. Мировой опыт каптажа метана и развития дегазации на шахтах Советского Союза [Текст] / Г.Д. Лидин, А.Т. Айруни. М.: ЦНИЭИуголь, 1963. 36 с.
- 75. Лидин, Г.Д. О теории дегазации сближенных угольных пластов [Текст] / Г.Д. Лидин, А.Т. Айруни. М.: Госгортехиздат, 1963. С. 3-69.
- 76. Лидин, Г.Д. Современные методы дегазации угольных пластов [Текст] / Г.Д. Лидин. М.: ЦНИЭИуголь, 1960. 112 с.
- 77. Лискова, М.Ю. Движение газовоздушных смесей по выработанным пространствам [Текст] / М.Ю. Лискова // Горный информационно-аналитический бюллетень. 2017. № 7. С. 131-136.
- 78. Лойцянский, Л.Г. Механика жидкостей и газов [Текст] / Л.Г. Лойцянский. М.: Наука, 1973.-848 с.
- 79. Лыков, А.В. Теория тепло- и массопереноса [Текст] / А.В. Лыков, Ю.А. Михайлов. М.: Гоэнергоиздат, 1963. 535 с.
- 80. Лыков, А.В. Тепломассообмен (Справочник) [Текст] / А.В. Лыков. М.: Энергия, 1971. 560 с.
- 81. Мавроди, А.В. Использование резерва воздуха на выемочных участках при отключении систем дегазации [Текст] / А.В. Мавроди // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2019. № 3(56) С. 37-46.
- 82. Мавроди, А.В. Программное обеспечение горноспасательных работ [Текст] / А.В. Мавроди, В.В. Захлебин // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2020. № 1(57). С. 86-93.
- 83. Медведев, В.Н. Прогнозирование значений концентрации метана в рудничной атмосфере при интенсивных газовыделениях в горные выработки [Текст] / В.Н. Медведев // Сборник научных трудов МакНИИ. Макеевка, 2007. № 20. С. 110-119.
 - 84. Методические указания по выбору схем проветривания выемочных

- участков шахт Донбасса с учетом опасности местных скоплений метана, эффективности управления газовыделением, устойчивости проветривания, обеспечения безопасных условий в аварийных ситуациях и предупреждения самовозгорания угля [Текст] / А.И. Бобров, И.Н. Попов, Д.В. Кузьмин [и др.] Макеевка: ротапринт МакНИИ, 1990. 10 с.
- 85. Методические указания по определению экономической эффективности использования в угольной промышленности новой техники, связанной с предупреждением и тушением подземных пожаров [Текст]: утв. Минуглепром СССР 28.11.1980. Москва, 1981. 114 с.
- 86. Милетич, А.Ф. Утечки воздуха в шахтах [Текст] / А.Ф. Милетич, М.: Госгортехиздат, 1962. 132 с.
- 87. Мониторинг стану дегазаційних систем вугільних шахт України. Звіт, Донецьк, Донвугі, 2007. 115 с.
- 88. Морев, А.М. Дегазация сближенных пластов [Текст] / А.М. Морев, И.И. Евсеев. М.: Недра, 1975. 168 с.
- 89. Морев, А.М. Дегазация угольных шахт и использование метана [Текст] / А.М. Морев, Н.М. Сахаров. Донецк: Донбасс, 1974. 110 с.
- 90. Морев, А.М. Закономерности дегазации спутников угольных пластов и инженерные методы ее расчета [Текст]: автореф. дис. ... д-ра техн. наук: 05.15.02 / Морев Александр Михайлович. Москва, 1974. 44 с.
- 91. Морев, А.М. Разгрузка спутников угольных пластов и газовыделения из них в зависимости от расстояния до очистного забоя [Текст] / А.М. Морев // Борьба с газом, пылью, выбросами в угольных шахтах. Макеевка: МакНИИ, 1971. N 7. С. 41-46.
- 92. Морев, А.М. Управление дегазацией угольных пластов Донбасса при авариях в шахтах [Текст] / А.М. Морев, С.Н. Осипов // Предупреждение и ликвидация аварий на угольных шахтах. Киев, 1964. Вып. 11. С. 21-30.
- 93. Обосновать параметры и разработать рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса [Текст]: отчет о НИР (промежуточ.): 11611043 / НИИГД «Респиратор»

- МЧС ДНР; рук. Карнаух Н.В. Донецк, 2017. 134 с.
- 94. Осипов, С.Н. Борьба со взрывами газа в горных выработках [Текст] / С.Н. Осипов. М.: Недра, 1972. 160 с.
- 95. Осипов, С.Н. Борьба с газом на угольных шахтах при авариях [Текст] / С.Н. Осипов. К.: Техника, 1969. 200 с.
- 96. Пак, Γ .А. Взаимосвязь обрушений основной кровли с газодинамическими явлениями на угольных шахтах [Текст] / Γ .А. Пак, Н.А. Дрижд, В.Н. Долгоносов // Уголь. 2014. № 1. С. 56-58.
- 97. Палеев, Д.Ю. Моделирование аэрогазодинамических процессов в вентиляционных сетях современных горнодобывающих предприятий [Текст] / Д.Ю. Палеев, В.В. Аксенов, О.Ю. Лукашов [и др.] // Горный информационно-аналитический бюллетень. 2015. С. 224-230.
- 98. Патрушев, М.А. Проветривание высокомеханизированных лав [Текст] / М.А. Патрушев, Е.С. Драницын. Донецк: Донбасс, 1974. 152 с.
- 99. Пашковский, П.С. Нормализация газового режима выемочного участка при отключении системы дегазации [Текст] / П.С. Пашковский, Н.В. Карнаух, А.В. Мавроди // Научный вестник НИИГД «Респиратор»: науч.-техн. журн. Донецк, 2019. № 2(56) С. 78-87.
- 100. Пашковский, П.С. Управление дегазацией на выемочных участках угольной шахты в нормальных и аварийных условиях [Текст] / П.С. Пашковский, А.Л. Иванников // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». Донецк, 2013. Вып. 50. С. 16-25.
- 101. Печук, И.М. Дегазация спутников угольных пластов скважинами [Текст] / И.М. Печук – М.: Углетехиздат, 1956. – 83 с.
- 102. Постникова, М.Ю. Влияние выработанных пространств на аэрогазодинамические процессы при аварийных режимах вентиляции рудников [Электронный ресурс]: автореф. дис. ... канд. техн. наук: 25.00.20 / Постникова Мария Юрьевна. Тула: ТулГУ, 2011. 20 с. URL: https://search.rsl.ru/ru/record/01004839851 (дата обращения: 07.04.2021).
 - 103. Правила безопасности в угольных шахтах: утв. совместным приказом

- Государственного Комитета горного и технического надзора Донецкой Народной Республики и Министерством угля и энергетики Донецкой Народной Республики 18.04.2016 № 36/208. Донецк, 2016. 218 с.
- 104. Произвести оценку взрывоопасности горных выработок в зависимости от нормы концентрации метана и уровня контроля за состоянием проветривания [Текст]: отчет о НИР: 2229060103 / ДонУГИ; рук. Гершун О.С. Донецк, 1979. 117 с.
- 105. Пучков, Л.А. Аэродинамика подземных выработанных пространств [Текст]. М.: Изд-во МГГУ, 1993. 267 с.
- 106. Пучков, Л.А. Влияние режима проветривания на распределение метана в выработанном пространстве [Текст] / Л.А. Пучков, Н.О. Каледина. Изв. вузов. Горный журнал, 1980. № 10. C. 46-49.
- 107. Пучков, Л.А. Динамика метана в выработанных пространствах шахт [Текст] / Л.А. Пучков, Н.О. Каледина. М.: Изд-во МГГУ, 1995. 313 с.
- 108. Радченко, В.В. Ликвидация аварий в угольных шахтах [Текст] / В.В. Радченко, С.Н. Смоланов, Г.М. Алейникова. К.: Техника, 1999. 320 с.
- 109. Разработать режимы работы дегазационных систем при пожарах на шахтах Донбасса: отчет о НИР: (заключ.): 1902050000 // ВНИИГД; рук. Греков С.П. Донецк, 1974. 267 с.
- 110. Рекомендации по выбору рациональных вентиляционных режимов при пожарах на шахтах, проветриваемых несколькими вентиляторами [Текст] / Сост. И.Е. Болбат, А.М. Гущин, В.Н. Шевченко [и др.]. Донецк: ВНИИГД, 1983. 38 с.
- 111. Романченко, С.Б. Исследование и разработка методов расчета режимов совместной работы главных вентиляторов при ликвидации подземных аварий в угольных шахтах [Текст]: автореф. дис. ... канд. техн. наук: 05.26.01 / Романченко Сергей Борисович. М.: ИГД им. А.А. Скочинского, 1986. 13 с.
- 112. Романчук, А.Л. Дегазация при тушении пожаров в угольных шахтах [Текст] / А.Л. Романчук, Г.М. Алейникова. – Киев: Техника, 1987. – 119 с.
- 113. Романчук, А.Л. Определение ожидаемого содержания метана в исходящей струе участка при изменении режима дегазации [Текст] /

- А.Л. Романчук, А.М. Гущин, Е.И. Бржевский // Уголь Украины. 1975. № 7 С. 48-52.
- 114. Руденко, О.С. Прямоточные схемы проветривания выемочного участка на газоносных пластах [Текст] / О.С. Руденко // В сб.: Техника безопасности, охрана труда и горноспасательное дело. ЦНИЭИуголь. № 3 (81). М.: 1974. С. 6-7.
- 115. Руководство по применению дегазации при ликвидации горения метана в шахтах [Текст]: утв. ВГСЧ 24.08.1983. / ВНИИГД. Донецк, 1983. 101 с.
- 116. Руководство по проведению депрессионных и газовых съемок в угольных шахтах [Текст]. Донецк: НИИГД «Респиратор» 2020. 92 с.
- 117. Руководство по проектированию вентиляции угольных шахт [Текст]: ДНАОТ 1.1.30-6.09-93: утв. приказом Государственного Комитета Украины по надзору за охраной труда № 131 20.12.1993. Киев, 1994. 311 с.
- 118. Румянцева, В.А. Прогнозирование переходных газовых режимов посредством применения переходной характеристики выработанного пространства [Электронный ресурс] / В.А. Румянцева, П.Н. Танцов // Горный информационно-аналитический бюллетень. 2016. № 1. С. 340-346. URL: https://www.giab-online.ru/catalog/11291 (дата обращения: 20.10.2021).
- 119. Савенко, Л.В. Дегазация спутников угольных пластов [Текст] / Л.В. Савенко, М.И. Озеркин. Киев: Техника, 1963. 130 с.
- 120. Технические указания по управлению газовыделением на выемочных участках средствами вентиляции [Текст] / О.И. Касимов, И.Н. Попов, В.Б. Балинский и др. Макеевка: Донбасс, 1972. 59 с.
- 121. Технологические схемы нормализации аэрогазового и теплового режимов горных выработок с использованием турбулизаторов воздуха на различных источниках энергии [Текст]: $COY \Pi$ 05.1.00185790.021:2012. Киев, 2013. 63 с.
- 122. Тимошенко, А.М. Анализ существующих методов прогноза метановыделения на выемочных участках [Электронный ресурс] / А.М. Тимошенко, М.Н. Баранова, К.А. Тимошенко // Вестник научного центра по безопасности работ в угольной промышленности / ВостНИИ. Кемерово. 2009. № 2 С. 65-79. –

- URL: https://cyberleninka.ru/article/n/analiz-suschestvuy-uschih-metodov-prognozametanovydeleniya-na-vyemochnyh-uchastkah/viewer (дата обращения: 06.09.2020).
- 123. Уорн, Г. Справочник по математике для научных работников и инженеров [Текст] / Г. Уорн, Т. Корн. М.: Наука, 1974 с. 831 с.
- 124. Устав по организации и ведению горноспасательных работ государственной военизированной горноспасательной службой Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий [Текст]. Донецк, НИИГД «Респиратор, 2016. 332 с.
- 125. Ушаков, В.К. Классификация схем проветривания вентиляционных и выемочных участков [Текст] / В.К. Ушаков, М.В. Фомичев // Безопасность труда в промышленности. 1995. \mathbb{N} 2 7 С. 47-49.
- 126. Ушаков, К.З. Газовая динамика шахт [Текст]. Изд. 2-е, перераб. и доп. М.: Изд-во МГГУ, 2004. 480 с.
- 127. Шубин, Е.А. Проблемные вопросы расчета газовыделения в выемочный участок с учетом геомеханических и газодинамических процессов и методы их решения [Текст] / Е.А. Шубина, В.Г. Лукьянов // Известия Томского политехнического университета [Известия ТПУ]. 2015. Т. 326, № 3. С. 13-18.
- 128. Ямщиков, В.С. Методы и средства исследования и контроля горных пород и процессов [Текст] / Ямщиков В.С. М.: Недра, 1982. 295 с.
- 129. Ярембаш, И.Ф. Определение коэффициента перемешивания в турбулентных потоках горных выработок [Текст] / И.Ф. Ярембаш. Изв. вузов. Горный журнал. 1970. № 5. С. 64-67.
- 130. Airey E. Diffusion of firedamp in mine airways "Mining Enge", 1969, № 100, Ian., P. 207 216/
- 131. Lubczyńska, Zofia. Wplyw odmetanowania na bezpiecze stwońpracy w kopalniach gazowych / Lubczyńska Zofia, Luczynski Jerry, Ciás Zdizisláw // Wiad. górn. 1971. Rok. 22, Nr. 4. S. 97-105.
- 132. Myszoz, Hubert. Proba określenia rzeczywistej elektywności odmetanowania ścian / H. Myszor // Przeglad Gorniczy. 1976. Nr. 9. S. 385-389.
 - 133. Oparin V.N. Theoretical Fundamentals to Describe Interaction of

Geomechanical and Physicochemical Processes in Coal Seams. Journal of Mining Science. 2017. Vol. 53. N 2, p. 201-215. DOI: 10.1134/S1062739117022031.

- 134. Stuffken, J. Ein Berechnungsverfahren zur Bestimmung der Ausgasung von Steinkohlenflozen // Bergbau Archiv. − 1960. − № 1. − C. 40-49.
- 135. Zettler, A., Poisel, R., Roth, W., Preh, A.: Slope stability analysis based on the shear reduction technique in 3D. In: FLAC and Numerical Modeling in Geomechanics. Proceedings of the Conference, Minneapolis, September 1999, C. Detournay and R. Hart (Eds.), Rotterdam: Balkema, pp. 11-16.

приложение а

Рекомендации

по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса (копия)

Министерство по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики

Государственный научно-исследовательский институт горноспасательного дела, пожарной безопасности и гражданской защиты «Респиратор»

УТВЕРЖДЕНО Министерством по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики 15.10. 2018 № 324

Рекомендации

по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса

УДК [622.454:622.817.47](083.13) Р 36

Рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса: утв. МЧС ДНР 15.10.2018 № 324. – Донецк: НИИГД «Респиратор», 2018. – 51 с.

Приведены методы прогноза метановыделения, оценки газовой обстановки, определения необходимого расхода воздуха для нейтрализации выделения метана, расчета резервов воздуха на участке, в вентиляционной сети и на вентиляторах главного проветривания, выбора аварийных режимов проветривания выработок выемочного участка при отключении систем дегазации и (или) газоотсоса, параметры аэраторов и турбулизаторов воздуха с различными источниками энергии для ликвидации местных скоплений метана и аэродинамические характеристики газоотсасывающих вентиляторов.

Для работников Государственной военизированной горноспасательной службы Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики.

Составители: В.Г. Агеев, Р.А. Васильченко, Н.В. Карнаух, С.А. Коробкин, А.В. Мавроди, П.С. Пашковский, Ю.Н. Пономарёв, А.М. Симонов

© НИИГД «Респиратор», 2018

Производственно-практическое издание

Рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса

Ответственный за выпуск A.M. Симонов

Подписано в печать 30.11.2018. Формат $60\times90^{-1}/16$. Гарнитура таймс. Бумага офсетная. Печать лазерная. Усл. печ. л. 2,5. Тираж 25 экз. Заказ № 43

НИИГД «Респиратор». 283048, Донецк, ул. Артема, 157

ПРИЛОЖЕНИЕ Б

Справка о внедрении результатов диссертационного исследования в подразделения ГВГСС МЧС ДНР (копия)

МИНИСТЕРСТВО ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ

ДЕПАРТАМЕНТ ГОСУДАРСТВЕННОЙ ВОЕНИЗИРОВАННОЙ ГОРНОСПАСАТЕЛЬНОЙ СЛУЖБЫ

(Департамент ГВГСС МЧС ДНР)

Web:www.dnmchs.ru ул.Артема	157, г. Донецк, 283048	тел/факс (062) 332-18-10	E-mail:gvgss.dn@mail.dnmchs.ru
-----------------------------	------------------------	--------------------------	--------------------------------

02.11.2022	No	15-03	33
Ha № .	ОТ		(

Справка

о внедрении результатов диссертационного исследования Мавроди Александра Викторовича.

Департамент Государственной военизированной горноспасательной службы Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики (далее — ГВГСС МЧС ДНР) подтверждает, что разработанные Мавроди А.В. «Рекомендации по выбору режимов проветривания выемочных участков при отключении систем дегазации и газоотсоса» (далее — Рекомендации) внедрены в следующие горноспасательные подразделения:

- Оперативный государственный военизированный горноспасательный отряд МЧС ДНР (г. Донецк);
- 1 Государственный военизированный горноспасательный отряд МЧС ДНР (г. Горловка);
- -2 Государственный военизированный горноспасательный отряд МЧС ДНР (г. Торез);
- -3 Государственный военизированный горноспасательный отряд МЧС ДНР (г. Макеевка).

Личный состав руководствуется положениями, изложенными в настоящих Рекомендациях при ликвидации аварий и аварийных ситуаций на угольных шахтах, применяющих системы дегазации.

Справка дана для предоставления в диссертационный Ученый совет по защите кандидатской диссертации.

Врио директора Департамента ГВГСС МЧС ДНР

CO

О. Ю. Скидан

Васильченко Роман Александрович (062) 332-18-02