## Федеральное государственное казенное учреждение «Научно-исследовательский институт «Респиратор» Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

На правах рукописи

Лебедева Виктория Валентиновна

### ОБОСНОВАНИЕ ПАРАМЕТРОВ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ ДЛЯ ПОВЫШЕНИЯ ОГНЕСТОЙКОСТИ ДЕРЕВЯННЫХ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

2.10.1 Пожарная безопасность (технические науки)

#### Диссертация

на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, старший научный сотрудник Долженков Анатолий Филиппович

#### ОГЛАВЛЕНИЕ

| введен  | ИЕ   |                                                                                                                                                                                                                                              | 5  |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|         | l.   | СОВРЕМЕННЫЕ ПОДХОДЫ К ОЦЕНКЕ ПАРАМЕТРОВ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ ДЛЯ ДЕРЕВЯННЫХ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ: СОСТОЯНИЕ ВОПРОСА                                                                                                                  | 14 |
| 1       |      | Патентно-информационные исследования по пассивной огнезащите деревянных и металлических конструкций, повышению пределов их огнестойкости, обзор и анализ публикаций, описывающих перспективные пути усовершенствования огнезащитных покрытий | 14 |
| 1       |      | Анализ методических принципов обоснования параметров огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций.                                                                                               | 19 |
| 1       |      | Положения нормативных требований в контексте совершенствования огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций                                                                                      | 27 |
| 1       |      | Обзор методов и результатов определения влияния внешних факторов на огнезащитную эффективность покрытий для деревянных и металлических конструкций                                                                                           | 31 |
| 1       | .5.  | Выводы к Главе 1. План диссертационного исследования                                                                                                                                                                                         | 41 |
| ГЛАВА 2 | 2.   | ПРОГРАММА И МЕТОДИКА<br>ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ                                                                                                                                                                                       | 44 |
| 2       | 2.1. | Обоснование выбора исходных материалов для создания рецептуры огнезащитного покрытия                                                                                                                                                         | 44 |
| 2       |      | Методы исследований, приборы и экспериментальное оборудование                                                                                                                                                                                | 51 |
| 2       |      | Методика проведения экспериментальных исследований по определению эксплуатационных параметров огнезащитных покрытий                                                                                                                          | 53 |
| 2       |      | Анализ и обработка экспериментальных данных                                                                                                                                                                                                  | 57 |
| 2       | 2.5. | Выводы к Главе 2                                                                                                                                                                                                                             | 60 |
| ГЛАВА 3 | 3.   | ОБОСНОВАНИЕ КОНЦЕПЦИИ СОВЕРШЕНСТВОВАНИЯ ПАРАМЕТРОВ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ ВСПУЧИВАЮЩЕГОСЯ ТИПА ДЛЯ ДЕРЕВЯННЫХ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ                                                                                                     | 61 |

| 3.]      | . Теоретическая база концепции совершенствования параметров огнезащитных покрытий                                                                                    | 61   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.2      | 2. Научное обоснование классификации параметров огнезащитных покрытий                                                                                                | . 72 |
| 3.3      | 3. Рецептурные принципы создания огнезащитных покрытий вспучивающегося типа                                                                                          | . 78 |
| 3.4      | 4. Выводы к Главе 3 <u></u>                                                                                                                                          | 83   |
| ГЛАВА 4. | ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ВОЗДЕЙСТВИЮ ВНЕШИХ ФАКТОРОВ НА ОГНЕЗАЩИТНЫЕ СВОЙСТВА РАЗРАБОТАННОГО ОГНЕЗАЩИТНОГО ПОКРЫТИЯ ВСПУЧИВАЮЩЕГОСЯ ТИПА                    | 84   |
| 4.1      | . Исследование воздействия воды, влажности и устойчивости к переменному воздействию температуры и влажности на огнезащитные свойства покрытия                        | 84   |
| 4.2      | 2. Оценка воздействия внешних факторов на огнезащитные свойства покрытия                                                                                             | 100  |
| 4.3      | 3. Исследование изменения параметров вспучивания огнезащитного покрытия от влияния температуры нагрева покрытия без воздействия и после воздействия внешних факторов | 103  |
| 4.4      | I. Выводы к Главе 4                                                                                                                                                  |      |
| ГЛАВА 5. | ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ОГНЕЗАЩИТНОГО ПОКРЫТИЯ ПУТЕМ МОДЕЛИРОВАНИЯ КОМПОНЕНТНОГО СОСТАВА                                                                              | 113  |
| 5.1      | . Объект и количественные критерии оптимизации параметров огнезащитного покрытия                                                                                     |      |
| 5.2      | 2. Результаты экспериментальных исследований модельных смесей                                                                                                        | 114  |
| 5.3      | 3. Анализ и представление результатов оптимизации в виде диаграммы «состав – свойство»                                                                               | 119  |
| 5.4      | 4. Оценка экономической эффективности внедрения разработанного огнезащитного покрытия вспунивающегося типа                                                           | 122  |
| 5.4      | вспучивающегося типа                                                                                                                                                 |      |
|          | 5. Выводы к Главе 5<br>ЕНИЕ                                                                                                                                          | 128  |
|          | ЛИТЕРАТУРЫ                                                                                                                                                           | 131  |

| ПРИЛОЖЕНИЕ А. Титульный лист и список разработчиков                                                   |     |
|-------------------------------------------------------------------------------------------------------|-----|
| инструкции по приготовлению огнезащитного покрытия для деревянных и металлических конструкций (копии) | 146 |
| ПРИЛОЖЕНИЕ Б. Акт внедрения научно-технической продукции (копия)                                      | 148 |
| ПРИЛОЖЕНИЕ В. Акт внедрения в научный процесс результатов диссертационного исследования (копия)       | 150 |
| ПРИЛОЖЕНИЕ Г. Акт внедрения результатов исследований диссертационной работы (копия)                   | 153 |

#### **ВВЕДЕНИЕ**

**Актуальность темы исследования.** Одним из эффективных способов повышения огнестойкости деревянных и металлических конструкций является применение огнезащитных покрытий вспучивающегося типа, механизм действия которых основан на увеличении исходной толщины слоя покрытия и образовании слоя кокса низкой теплопроводности при внешнем тепловом воздействии.

Эффективность огнезащитных покрытий вспучивающегося типа в значительной степени зависит от ряда параметров, классификации которых в настоящее время недостаточно полно отражают комплексную оценку огнезащитных, физико-механических и теплофизических свойств покрытий с учетом дифференцированного подхода к выделению каждого из параметров в зависимости от влияющих факторов в условиях длительной эксплуатации.

Общепринятая система оценки рисков возникновения и развития пожаров имеет ряд недостатков в связи с низкой степенью достоверности прогноза качества огнезащиты конструкций не только в условиях пожара, но и в эксплуатационный период из-за отсутствия количественных критериев оценки влияния внешних факторов на состояние огнезащитных, физико-механических и теплофизических свойств защитных покрытий и на их огнезащитную эффективность.

Не в полной мере изучены и обоснованы параметры, определяющие уровень огнезащитной эффективности покрытий — изменение кратности вспучивания, массы, плотности и пористости кокса, образующегося в результате нагрева покрытий с учетом продолжительного периода воздействия на них внешних факторов, что не позволяет достоверно оценить степень изменения огнестойкости конструкций в длительный период эксплуатации, а также разрабатывать перспективные направления в создании новых более эффективных огнезащитных покрытий.

Изложенное определяет актуальность поставленной в работе научнотехнической задачи, заключающейся в обосновании параметров эффективности огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций с учетом продолжительного воздействия на них внешних факторов, решение которой позволит прогнозировать степень изменения эффективности огнезащиты конструкций в длительный период их эксплуатации и повысить уровень пожарной безопасности объектов защиты в условиях пожара.

Степень разработанности темы. Изучению действия механизмов огнезащитных покрытий, методологии оценки их свойств посвящены научные работы многих отечественных И зарубежных ученых: Асеевой Баратова А. П., Гаращенко А. Н., Ереминой Т. Ю., Зыбиной О. А., Канина В. А., Корольченка А. Я., Корольченка Д. А., Ненахова С. А., Xiao J., Kozlowski R., Wesolek D., Kimmo Saari, Garner A., White R., Nordheim E., Janssens M. и др.

Однако научное обоснование показателей, учитывающих условия эксплуатации огнезащитных покрытий, которые накладывают дополнительные требования по устойчивости к воздействию внешних факторов (вода, влажность, переменное воздействие температуры и влажности), не теряет своей актуальности.

Решение указанной научной задачи позволит установить зависимости воздействия влияющих факторов на эффективность огнезащитных покрытий и создать на этой основе новую рецептуру вспучивающегося огнезащитного покрытия с улучшенными эксплуатационными параметрами.

Связь работы с научными планами, программами, темами. Диссертация является результатом обобщения законченных научно-исследовательских работ в соответствии с научной тематикой на 2020–2021 гг. Государственного бюджетного учреждения «Научно-исследовательский институт «Респиратор» Министерства по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Донецкой Народной Республики», выполнявшихся автором в качестве научного руководителя в рамках работы «Исследовать возможность создания и разработать рецептуру огнезащитного вспучивающегося покрытия для деревянных и металлических конструкций» (№ ГР 12015007), исполнителя — в работе «Разработать и изготовить лабораторную установку для исследований и оценки огнезащитной эффективности вспучивающихся огнезащитных покрытий по металлу» (№ ГР 12015009).

**Цель исследования** заключается в обосновании параметров огнезащитных покрытий путем установления зависимостей, характеризующих степень воздействия внешних факторов на огнезащитные свойства покрытий для повышения огнестойкости деревянных и металлических конструкций.

#### Задачи исследования:

- 1. Установить параметры, влияющие на огнезащитную эффективность покрытий, и научно обосновать выбор исходных материалов, физико-химические свойства которых способствуют повышению устойчивости покрытия к воздействию внешних факторов.
- 2. Научно обосновать классификацию параметров огнезащитных покрытий и критерии их оценки с учетом внешних факторов, влияющих на огнезащитные, физико-механические и теплофизические свойства покрытий.
- 3. Разработать на основе результатов экспериментальных исследований рецептуру огнезащитного покрытия, обладающего повышенными показателями устойчивости к воздействию внешних факторов.
- 4. Установить зависимости воздействия внешних факторов: воды, влажности, а также переменного воздействия температуры и влажности на огнезащитную эффективность разработанного огнезащитного покрытия.
- 5. Оптимизировать параметры огнезащитного покрытия посредством моделирования компонентного состава при обеспечении его эффективности.

**Объект исследования** — процессы тепло- и массопереноса, обеспечивающие повышение огнестойкости деревянных и металлических конструкций.

**Предмет исследования** — параметры огнезащитных покрытий вспучивающегося типа и влияние на них внешних факторов.

Настоящая диссертационная работа выполнена в соответствии с паспортом научной специальности 2.10.1 — Пожарная безопасность (технические науки) в части п. 10 «Разработка научных основ, моделей и методов, направленных на создание и применение веществ и материалов пониженной горючести, средств огнезащиты и огнетушащих веществ», п. 12 «Разработка научных основ создания

систем, методов и технических средств обнаружения, предупреждения и ликвидации аварий, пожаров и взрывов».

#### Научная новизна полученных результатов

Впервые экспериментально установлено массовое соотношение обеспечивающее компонентов покрытия, повышение огнезащитной эффективности на 22,7 % за счет образования при нагреве вспененного кокса с высокой плотностью низкой пористостью И И снижение показателей водопоглощения на 15,7 %, влагопоглощения на 40,0 %, что послужило основой разработки новой рецептуры более эффективного по сравнению с аналогами вспучивающегося огнезащитного покрытия.

Впервые установлены зависимости влияния воды, влажности, переменного воздействия температуры и влажности на изменение кратности вспучивания, потери массы, плотности и пористости кокса, образующегося в процессе нагрева разработанного огнезащитного покрытия в диапазоне температур 27–670 °C, позволившие обосновать и оценить степень влияния внешних факторов на изменение огнезащитных свойств покрытия.

Впервые разработаны полиномиальные модели неполного третьего порядка зависимости «состав – кратность вспучивания» и «состав – потеря массы», что позволило установить рациональное содержание полифосфата аммония (15,6 масс. %), терморасширяющегося графита (10,4 масс. %), бората цинка (2,6 масс. %) в компонентном составе вспучивающей добавки, оказывающей определяющее влияние на огнезащитные свойства и стойкость огнезащитного покрытия к воздействию внешних факторов.

#### Теоретическая и практическая значимость работы

Теоретическая значимость полученных результатов заключается в:

– установленных зависимостях изменения кратности вспучивания, массы, плотности и пористости вспененного кокса от температуры нагрева огнезащитного покрытия для прогноза сохранения его огнезащитной эффективности с учетом воздействия внешних факторов в длительный период эксплуатации деревянных и металлических конструкций,

– разработанных математических моделях зависимости «состав – кратность вспучивания» и «состав – потеря массы» для оптимизации параметров огнезащитного покрытия.

Практическая значимость работы обусловлена:

- установлением требований к параметрам, наиболее влияющим на показатели эффективности огнезащитных покрытий, таких как водостойкость, влагостойкость и стойкость к переменному воздействию температуры и влажности,
- созданием новой рецептуры вспучивающегося огнезащитного покрытия,
   теоретически установленные и экспериментально обоснованные параметры
   которого обеспечивают повышенную стойкость к воздействию внешних факторов
   в период эксплуатации и в условиях пожара,
- оптимизацией параметров разработанного огнезащитного покрытия по критериям – кратность вспучивания и потеря массы – посредством моделирования компонентного состава,
- установлением синергетического эффекта влияния совместного введения полифосфата аммония, терморасширяющегося графита и бората цинка на формирование устойчивого коксового остатка в результате нагрева огнезащитного покрытия,
- разработкой «Инструкции по приготовлению огнезащитного покрытия для деревянных и металлических конструкций», утвержденной Министром МЧС ДНР 10.01.2023.

#### Методология и методы исследования

Для решения поставленных задач использованы современные методы обобщение научных исследований: анализ, И статистическая обработка экспериментальных данных применением компьютерных технологий; экспериментальные исследования параметров И испытания ПО оценке огнезащитного покрытия с использованием стандартных и лабораторных методов; симплекс-решетчатый метод математического планирования установление зависимостей между огнезащитными и эксплуатационными свойствами покрытия с применением многофакторного регрессионного анализа.

#### Положения, выносимые на защиту:

- 1. Зависимости влияния содержания компонентов вспучивающей добавки на водопоглощение, влагопоглощение и стойкость огнезащитного покрытия к переменному влиянию температуры и влажности, что позволило установить диапазоны массовых концентраций полифосфата аммония 13,9–15,6 масс. %, терморасширяющегося графита 9,0–10,4 масс. % и бората цинка 2,0–3,0 масс. %, при которых внешние факторы не оказывают влияния на параметры огнезащитных свойств покрытия для деревянных и металлических конструкций, обеспечивая высокий уровень их пожарной безопасности.
- 2. Зависимости влияния воды, влажности, переменного воздействия температуры и влажности на изменение кратности вспучивания, массы, плотности и пористости коксового остатка, образующегося в процессе нагрева огнезащитного покрытия, при повышении огнезащитной эффективности на 22,7 %, снижении показателя водопоглощения на 15,7 % и влагопоглощения на 40,0 %.
- 3. Математические модели зависимости «состав кратность вспучивания» и «состав потеря массы», позволившие установить синергетический эффект влияния совместного введения полифосфата аммония, терморасширяющегося графита, бората цинка на снижение потери массы до 1 % и увеличение кратности вспучивания огнезащитного покрытия до 44 единиц для обеспечения необходимого уровня огнестойкости деревянных и металлических конструкций в условиях пожара.

#### Степень достоверности и апробация результатов

Достоверность результатов исследований, выводов подтверждена адекватностью разработанных математических моделей; представительностью и репрезентативностью статистических данных экспериментальных исследований по влиянию внешних факторов на огнезащитную эффективность покрытий; корректностью и обоснованной доказательной базой применения методик проведения экспериментальных исследований, корректным применением методов математической статистики при оценке огнезащитной эффективности покрытий.

Основные положения и отдельные этапы диссертационной работы докладывались, обсуждались и получили положительные отзывы на семи научнопрактических конференциях, проводимых в ДНР, Российской Федерации: научно-технической Четвертой Республиканской конференции «Пожарная безопасность объектов Республики», приуроченной ко Дню пожарной охраны (г. Донецк, 28 апреля 2022 г.); VIII Международной научно-практической конференции «Инновационные перспективы Донбасса» (г. Донецк, 24–26 мая 2022 г.); VI Республиканской научной конференции «Современное состояние и перспективы дальнейшего развития системы гражданской обороны Донецкой Народной Республики» (г. Донецк, 18 октября 2022 г.); V Республиканской научной конференции «Безопасность в чрезвычайных ситуациях», приуроченной ко Дню спасателя ДНР (г. Донецк, 14 декабря 2022 г.); Первой Международной научной конференция «Проблемы техносферной и экологической безопасности в промышленности, строительстве и городском хозяйстве» (г. Макеевка, 16 февраля 2023 г.); Пятой республиканской научно-технической конференции «Пожарная безопасность объектов Республики» (г. Донецк, 28 апреля XVIII Международной научно-практической конференции «Пожарная и аварийная безопасность» (г. Иваново, 23 ноября 2023 г.).

**Внедрение результатов.** В помещении склада Первого Государственного военизированного горноспасательного отряда г. Горловка МЧС ДНР выполнено нанесение разработанного вспучивающегося огнезащитного покрытия на вертикальные участки металлической и деревянной конструкции.

Теоретические положения И результаты диссертационной работы используются в учебном процессе в федеральном государственном казенном образования образовательном учреждении высшего «Донецкий институт Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий» при проведении занятий по дисциплинам: «Здания, сооружения и их устойчивость при пожаре» и «Безопасность людей при пожаре в зданиях и сооружениях (Пожарная безопасность объектов защиты,

материалов и изделий)» для подготовки специалистов по специальности 20.05.01 «Пожарная безопасность» и 20.04.01 «Техносферная безопасность».

**Личный вклад соискателя.** Автором самостоятельно проведен информационный поиск, обоснована целесообразность работы, сформулирована цель работы, определены задачи исследований для ее достижения; обосновано применение экспериментальных методов оценки параметров, влияющих на огнезащитную эффективность покрытий; научно обоснован подход к оценке эффективности огнезащитных покрытий с учетом влияния внешних факторов; сформулированы выводы по работе.

Публикации. Основные результаты диссертации изложены в 22 научных работах, в том числе 12 статей опубликованы в научных изданиях, включенных в перечень рецензируемых научных изданий ДНР и Российской Федерации, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, утвержденный приказом Министерства образования и науки Российской Федерации, 7 статей – в сборниках материалов научно-практических конференций, входящих в наукометрическую базу РИНЦ.

Структура и объем диссертации. Структура диссертационной работы определяется поставленной целью и соответствует логической последовательности решения поставленных автором задач исследования. Диссертация состоит из введения, основной части (из пяти глав), заключения (с основными выводами), списка условных сокращений, библиографического указателя, который содержит 127 наименований (115 отечественных авторов и 12 — зарубежных) и четырех приложений. Работа изложена на 145 страницах компьютерного текста, иллюстрирована 35 таблицами и 26 рисунками, из которых 2 таблицы занимают 4 полные страницы.

Автор искренне признателен и благодарен научному руководителю – доктору технических наук Анатолию Филипповичу Долженкову за научные консультации и ценные советы на всех этапах выполнения диссертации, а также сотрудникам Федерального государственного казенного учреждения «Научно-исследовательский институт «Респиратор» Министерства Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий», участвовавшим в выполнении научноисследовательских работ, результаты которых легли в основу диссертационной работы.

#### ГЛАВА 1.

# СОВРЕМЕННЫЕ ПОДХОДЫ К ОЦЕНКЕ ПАРАМЕТРОВ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ ДЛЯ ДЕРЕВЯННЫХ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ: СОСТОЯНИЕ ВОПРОСА

1.1. Патентно-информационные исследования по пассивной огнезащите деревянных и металлических конструкций, повышению пределов их огнестойкости, обзор и анализ публикаций, описывающих перспективные пути усовершенствования огнезащитных покрытий

Патентно-информационные исследования направлены на выявление актуальности проблемы повышения пределов огнестойкости деревянных и металлических строительных конструкций путем нанесения на их элементы огнезащитных покрытий вспучивающегося (интумесцентного) типа, а также на установление параметров, обеспечивающих улучшенные эксплуатационные и огнезащитные свойства покрытий.

Поиск патентной информации проведен Федерального ПО данным бюджетного учреждения «Федеральный государственного институт промышленной собственности» (http://www.new.fips.ru), Национального центра интеллектуальной собственности Республики Беларусь (http://www.belgospatent.by), Евразийской патентной организации (EAPO, http://www.eapo.org/ru), Европейского (EPO, http://www.worldwide.espacenet.com) и патентного бюро патентного ведомства США (http://patft.uspto.gov). В рамках патентного поиска осуществлен анализ патентов, принадлежащих к следующим категориям Международной патентной классификации: C08G 59/40, C08G 59/54; C08L 63/00; C09D 1/00, C09D 5/02, C09D 5/08, C09D 5/18, C09D 123/04, C09D 123/34, C09D 133/00, C09D 133/04, C09D 133/08, C09D 163/00, C09D 163/02; C09K 13/02, C09K 21/00, C09K 21/12, C09K 21/14.

Основная масса широко используемых строительных материалов (ткани, древесина, композиционные и полимерные материалы и др.) полностью сгорают в условиях пожара. Негорючие железобетонные и металлические конструкции, быстро нагреваясь (от 7 до 27 мин в зависимости от толщины конструкции), при температуре 500 °C резко теряют несущую способность, что зачастую приводит к разрушению конструкции [1]. Применение металлических конструкций без учета требований огнестойкости может привести К человеческим жертвам 3]. значительным материальным потерям [2; Наглядной иллюстрацией недостаточной защиты несущих металлических конструкций является трагедия, произошедшая в Нью-Йорке 11 сентября 2001 г. [4].

К техническим мероприятиям, результат выполнения которых направлен на решение проблемы снижения пожарных рисков, относится огнезащита зданий, сооружений и элементов строительных конструкций [5; 6]. К одному из наиболее эффективных способов огнезащиты можно отнести пассивную защиту элементов деревянных и металлических конструкций, которая является неотъемлемой частью структурной противопожарной защиты и пожарной безопасности зданий и сооружений [7].

Принцип защитного действия средств пассивной огнезащиты заключается в изолировании многими видами (типами) негорючих материалов поверхностей элементов деревянных и металлических конструкций от воздействия открытого пламени и высоких температур развивающегося пожара. Пассивная огнезащита значительно увеличивает пределы стойкости к огню деревянных и металлических конструкций, практически исключает их возгорание, что геометрических размеров в установленные нормами сроки [8]. Для пассивной огнезащиты конструкций применяют бетонирование, оштукатуривание специальными составами, а также использование кирпичной кладки, негорючих термостойких базальтовых плит-матов, многослойных панелей в виде огнестойких нанесение на защищаемую конструкцию огненепроницаемых экранов, специальных огнезащитных композиционных покрытий и др. [9–11].

В отличие от существовавшей ранее концепции пассивной огнезащиты, основанной на использовании самозатухающих материалов, сформированная в настоящее время концепция экранирования поверхности вспучивающимися тонкослойными покрытиями, легко наносимыми на поверхность конструкции, в большей степени наукоемка [12; 13]. Вспучивающееся огнезащитное покрытие представляет собой слой (слои) состава, нанесенного на поверхность объекта защиты, механизм огнезащитного действия которого основан на увеличении объема при тепловом воздействии и образовании теплоизоляционного слоя [14]. Принцип огнезащитного действия вспучивающихся покрытий состоит в уменьшении глубины и скорости прогрева защищаемой поверхности за счет выделения негорючих газов, паров воды и образования ячеистого вспененного кокса низкой теплопроводности [10; 15–18]. Образование достаточно твердого и способствуют низкотеплопроводного кокса предохранению защищаемой поверхности от воздействия как экстремально высоких температур (теплового излучения), так и непосредственно от открытого пламени, что позволяет продлить время возможной эвакуации людей и увеличить время, которое может быть потрачено для тушения пожара [19; 20].

С точки зрения эффективности огнезащиты и простоты нанесения на поверхность строительных конструкций, в том числе сложной конфигурации, наиболее перспективными являются огнезащитные покрытия вспучивающегося типа на основе растворимых в воде полимерных латексов [21; 22], а также растворимых в органических растворителях полимерных связующих [23–27].

Известно [28], что латексы сополимеров акрилата, чаще всего бутилакрилата, являются наиболее высококачественными связующими для самых разнообразных отделочных материалов, поскольку они имеют высокую адгезию, срок службы покрытий на их основе может достигать 25 лет. Однако к основному недостатку латексов сополимеров акрилата можно отнести их высокую стоимость. Бутадиен-стирольные латексы, широко использующиеся в производстве строительных отделочных материалов, характеризуются быстрым старением

пленок вследствие окисления остаточных двойных связей, что ограничивает срок службы получаемых огнезащитных покрытий [29].

Что касается водно-дисперсионных латексов, то к их преимуществам можно отнести пожаробезопасность, высокую концентрацию целевого компонента, отсутствие выделения вредных веществ в процессе изготовления покрытий по сравнению с растворами смол в органических растворителях [30, 31]. Тем не менее, водно-дисперсионные составы имеют ряд недостатков, которые заключаются в невозможности работать с покрытиями при отрицательных температурах, неудобстве транспортировки и хранения больших объемов составов и др. Вспучивающиеся огнезащитные покрытия на водной основе в условиях длительного воздействия неблагоприятных климатических факторов (дождь, снег и др.) склонны к потере огнезащитной эффективности за счет вымывания водорастворимых компонентов. Кроме того, водно-дисперсионные составы имеют небольшой температурный диапазон вспучивания, и поэтому они не всегда обеспечивают достаточную огнестойкость конструкции [32]. В связи с низкой устойчивостью к атмосферным воздействиям огнезащитные покрытия на основе растворимых в воде полимерных дисперсий применяют только для внутренних работ.

В различных отраслях техники и народного хозяйства широкое применение полимерных находят огнезащитные покрытия на основе полимерных и обладающие композиционных материалов, высокими декоративными, адгезионными, механическими свойствами, устойчивостью к атмосферным воздействиям, возможностью нанесения тонким слоем и продолжительным временем огнезащитного действия [33–36]. Однако существенными недостатками таких огнезащитных покрытий являются изменения параметров вспучивания и вспученного слоя после периода длительной эксплуатации сохранности конструкций [37].

Значительное количество технических решений проблемы снижения пожарной опасности деревянных и металлических конструкций, а также улучшения эксплуатационных параметров огнезащитных покрытий, подтверждает

тот факт, что в области пассивной огнезащиты продолжаются активные исследования по созданию новых рецептур покрытий вспучивающегося типа, обеспечивающих огнестойкость строительных конструкций [38–41].

Вместе с тем, остается не полностью решенным ряд вопросов, связанных с установлением и обоснованием влияния внешних факторов: воды, влажности, переменного воздействия температуры и влажности на сохранение огнезащитных свойств покрытия в условиях естественного старения при продолжительной эксплуатации конструкции.

В течение длительного периода применения огнезащитных материалов выработался комплекс научно-технологических подходов к созданию эффективных огнезащитных вспучивающихся покрытий. Рецептурные принципы создания огнезащитных вспучивающихся покрытий включают в себя несколько вариантов обязательных ингредиентов, совместное присутствие которых обеспечивает при нагреве огнезащитного покрытия выше 200 °C образование вспученного слоя высокой кратности [42–44].

Выполненный анализ основных принципов построения рецептур огнезащитных средств вспучивающегося типа позволил выделить обязательные целевые компоненты – пленкообразующее или связующее вещество, источник углерода, газообразователь (вспениватель), источник кислоты, термостойкий наполнитель, физико-химические свойства которых обеспечивают увеличение объема (толщины) слоя огнезащитного покрытия и существенный рост теплового сопротивления при огневом воздействии. Следует отметить, компонентов, обеспечивающих образование углеродного каркаса, в компонентный вспучивающихся огнезащитных состав покрытий вводят соединения, претерпевающие при высоких температурах химические превращения и фазовые переходы с формированием вспененного кокса оптимальной структуры и термостойкости [45; 46].

На основании результатов патентно-информационных исследований по вопросам пассивной огнезащиты деревянных и металлических конструкций, повышения пределов их огнестойкости выявлены главные недостатки

сегодняшний день огнезащитных покрытий, которые существующих на заключаются в изменении параметров вспучивания и сохранности вспученного слоя в условиях естественного старения. Выбраны и обоснованы наиболее перспективные пути решения данной проблемы, состоящие в повышении устойчивости огнезащитных покрытий вспучивающегося типа к воздействию внешних факторов, продлении их срока службы с сохранением огнезащитной эффективности за счет использования систем на основе нерастворимого в воде, негорючего пленкообразующего вещества уменьшения И количества водорастворимых компонентов в составе покрытия.

### 1.2. Анализ методических принципов обоснования параметров огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций

#### Огнестойкость металлических конструкций

Среди широкого круга металлических строительных материалов сталь остается одним из основных материалов для изготовления несущих конструкций высотных зданий и большепролетных сооружений, в том числе — сооружений сложных архитектурных форм.

Стальные конструкции, наряду с такими преимуществами, как удобство и скорость монтажа, значительная несущая способность при нормальных условиях эксплуатации, обладают серьезными недостатками, в числе которых — быстрый прогрев до критической температуры (500 °C) с потерей несущей способности в условиях пожара, а также низкая коррозионная стойкость [47; 48].

В связи с этим, возведение сооружений на основе стальных конструкций привело к возникновению проблем обеспечения безопасности персонала при чрезвычайных ситуациях, в частности – при пожарах, связанных со сравнительно малой огнестойкостью стальных конструкций. Низкие значения пределов огнестойкости стальных конструкций можно объяснить высокой теплопроводностью и снижением при нагреве прочностных характеристик

материала, а также имеющим место развитием температурных и пластических деформаций [49–51]. Следует отметить, что особенности поведения сталей в условиях пожара обусловлены не только их химическим составом (низколегированная, углеродистая), но также и особенностями изготовления или конструкции арматурных профилей [52]. Так, значения модуля продольной упругости стали существенно снижаются при ее нагревании выше 300 °C [53].

Таким образом, стальные конструкции, имея относительно небольшие пределы огнестойкости, во время пожара быстро нагреваются и могут снизить свои расчетные параметры вдвое уже через 15—40 мин после начала пожара, а при последующем воздействии высоких температур или их перепада – разрушиться.

Фактический предел огнестойкости стальных конструкций в зависимости от толщины элементов сечения и действующих напряжений составляет 0,1–0,4 ч, в то время как минимальные значения требуемых пределов огнестойкости металлоконструкций составляют 0,25–2,50 ч в зависимости от степени огнестойкости здания и типа конструкции [54].

#### Огнестойкость деревянных конструкций

Наиболее разрушительный характер пожаров с большим числом погибших и травмированных людей, значительным материальным ущербом проявляется в зданиях, построенных с применением конструкций из древесины (IV–V степень огнестойкости зданий и сооружений) [55]. Под огнестойкостью деревянной конструкции понимается промежуток времени, по истечении которого в условиях распространения пожара сохраняется ее целостность (несущая способность и конструктивная устойчивость).

Предел огнестойкости деревянных конструкций в среднем составляет 30–45 мин, что несколько превышает те же показатели для металлических конструкций [51]. В условиях пожара снижение несущей способности деревянных конструкций определяется снижением несущей способности их деревянных элементов и узловых соединений этих элементов. Снижение несущей способности элементов обусловлено обугливанием древесины, что приводит к уменьшению

рабочего сечения, способного воспринимать нагрузки, а также из-за изменения прочности древесины в необуглившейся части сечения [55–59].

Процесс термического разложения древесины претерпевает несколько последовательных стадий. Первая стадия процесса представляет собой индукционный период, в течение которого происходит нагрев древесины до температуры 280 °C, разложение материала с поглощением тепла и сгоранием продуктов разложения в газообразной форме, сопровождающееся образованием яркого пламени. Вторая стадия процесса, в свою очередь, включает два периода сгорания — газов, образующихся при термическом разложении древесины (пламенное горение), и образовавшегося древесного угля (тление). Некоторое время оба этих процесса протекают практически одновременно, после чего выделение газов прекращается, а гореть продолжает один только уголь.

Скорость выгорания основной массы древесного материала здания определяется следующими факторами:

- объемным весом всей конструкции,
- влажностью исходного строительного материала,
- температурой окружающей среды,
- соотношением свободных пространств к объемам, занимаемым древесиной.

Более плотный по своей структуре древесный материал, например, дуб (плотность 690 кг/м³), сгорает медленнее, чем осина (плотность 495 кг/м³), что объясняется различием в их кинетических параметрах термического разложения и скорости обугливания [55]. При воспламенении древесины с повышенным содержанием влаги определенное количество тепла расходуется на испарение влаги, в результате чего на разложение материала тратится меньше тепловой энергии [58]. С учетом всего изложенного естественно, что сухая древесина сгорает намного быстрее, чем древесина, находящаяся во влажном состоянии.

Особенность разрушения деревянных конструкций состоит в том, что при непосредственном контакте с открытым огнем термическое разложение древесины происходит с линейной скоростью распространения пламени по поверхности

древесины 1–10 мм/с, в зависимости от породы и влажности древесины, величины падающего теплового потока и ориентации горящей поверхности [59]. В результате выгорания исходное сечение изготовленных из древесины элементов уменьшается, а вместе с тем понижается их прочность, что влечет за собой полное разрушение всех составляющих деревянных конструкций.

Для предотвращения нагревания элементов и конструкций из древесины используют средства пассивной огнезащиты. В результате теоретических и экспериментальных исследований установлена возможность и перспективность использования вспучивающихся покрытий (лаков) для существенного снижения пожарной опасности деревянных конструкций [60–62].

Деревянные несущие и ограждающие строительные конструкции, включая узлы крепления и примыкания, должны сохранять при пожаре в течение нормируемой продолжительности регламентируемых воздействий несущую и ограждающую способность соответственно. Пределы огнестойкости деревянных конструкций определяют по ГОСТ 30247.0-94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1-94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции», класс пожарной опасности — по ГОСТ 30403-96 «Конструкции строительные. Метод определения пожарной опасности».

В работе [63] обоснована перспективность теплотехнических расчетов с применением методик серии «ОГНЕЗАЩИТА» для определения не только пределов огнестойкости, но и толщин огнезащиты, обеспечивающих требуемый класс пожарной опасности деревянных клееных конструкций.

Проведенный анализ фактических пределов огнестойкости деревянных и металлических строительных конструкций показал, что наименьшие пределы огнестойкости имеют стальные конструкции. В связи с этим, актуальной задачей является разработка для деревянных и стальных конструкций высотных зданий эффективных в тонких слоях защитных систем, которые не увеличивают вес конструкций.

Поскольку на сегодняшний день древесина и сталь остаются наиболее перспективными и востребованными конструктивными материалами [61; 64], в настоящей работе исследования по обоснованию влияния параметров огнезащитных покрытий для повышения огнестойкости конструкций проводились для деревянных и металлических (стальных) поверхностей.

### Обоснование параметров огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций

Улучшение огнезащитных свойств покрытий для противопожарной защиты деревянных и металлических конструкций является важной научно-практической задачей, решение которой требует определения и обоснования комплекса параметров для дальнейшей оценки огнезащитной эффективности покрытия и огнестойкости строительной конструкции. Обоснование параметров огнезащитных покрытий осуществлялось по критериям, главным образом, влияющим на улучшение показателей огнезащитной эффективности с учетом воздействия на огнезащитное покрытие внешних факторов.

Важным обстоятельством, влияющим на стадии горения огнезащитного материала покрытия, является образование вспененного кокса (пенококса) плотной структуры с низкой теплопроводностью в результате воздействия пламени на материал, что приводит к снижению выхода горючих продуктов в газовую фазу и уменьшению потока горючих газов к пламени. Вполне логично повышение огнезащитной эффективности путем влияния на направление деструкции материала огнезащитного покрытия в сторону увеличения количества и оптимизации структуры пенококса. Это позволяет отнести коэффициент (кратность) вспучивания при изотермическом нагреве, который зависит от высоты (объема) и плотности кокса, к критерию, существенно влияющему на устойчивость к выгоранию и механическому разрушению покрытия, следовательно, и на его огнезащитную эффективность. Следует отметить, что увеличение коэффициента вспучивания, несомненно, является определенным преимуществом огнезащитного покрытия. В условиях нестационарной теплопередачи толщина слоя значительно влияет на огнезащитную эффективность покрытия, так как характерное время

прогрева квадратично зависит от этого параметра. Однако дальнейшее увеличение вспучивания нецелесообразно, так как ведет к усилению радиационного переноса тепла в пористой среде и возможному нарушению целостности структуры кокса ввиду снижения его прочности. Для повышения огнезащитных возможностей покрытия целесообразно повышение плотности кокса при высоких температурах.

Ряд огнезащитных покрытий работает в открытой атмосфере и длительно испытывает влияние внешних факторов в виде повышенной влажности, низких и высоких температур, резких изменений температуры окружающей среды, а также воздействие жестких условий жидкой агрессивной среды (минерализованные воды, водные растворы солей, кислот и оснований, нефтепродукты, масла, смазки и др.), влияние механических колебаний, вибраций и нагрузок, которые могут вызвать снижение или полную потерю огнезащитных свойств покрытия в процессе эксплуатации [65].

Направление исследований В настоящей работе касается только противопожарной огнезащитных покрытий ДЛЯ защиты находящихся статическом состоянии деревянных и металлических конструкций, а влияние механических колебаний, вибраций и нагрузок на огнезащитную эффективность не рассматривалось.

Результаты исследования фазового и структурного состояния вспучивающихся огнезащитных покрытий методами рентгенодифракционного анализа и инфракрасной спектроскопии показывают, что коэффициент вспучивания значительно уменьшается с увеличением времени эксплуатации покрытия и уже при достижении 30 %-го ресурса приводит к снижению предела огнестойкости защищаемой металлической конструкции [66].

На огнестойкость строительных конструкций кроме непосредственной опасности, связанной с высокотемпературным воздействием в условиях пожара, существенное влияние оказывают косвенные факторы, например, разрушение покрытия при механических ударных воздействиях [67; 68], длительность и условия эксплуатации объектов [69].

В работе [70] исследователи показали, что огнезащитное покрытие без видимых изменений внешнего вида, массы и толщины при экспозиции в климатических условиях морской стационарной платформы за 15 месяцев практически полностью теряет свои огнезащитные свойства, о чем свидетельствует снижение коэффициента вспучивания от 28 до 5 единиц.

Приведенные в работах [71; 72] данные также ставят под сомнение длительные сроки эксплуатации вспучивающихся покрытий даже в самых благоприятных условиях их эксплуатации. Коэффициент вспучивания контрольных образцов, которые хранились в помещении без доступа света при температуре 20 °C и не превышающей 80 % влажности воздуха, снизился втрое за 15 месяцев испытаний [72; 73].

Таким образом, в процессе эксплуатации огнезащитного покрытия под воздействием внешних факторов происходят существенные изменения, влияющие на способность покрытия сохранять показатели огнезащитной эффективности. Значения лишь одного количественного критерия – коэффициента вспучивания – не достаточно для полной характеристики и оценки способности конструкции сопротивляться воздействию открытого огня.

К химическим методам огнезащиты древесины относят пропитку антипиренами. Компоненты, применяемые пропиточных составах, гигроскопичны и растворимы в воде. Поэтому в атмосферной среде с влажностью воздуха более 70 % или при прямом контакте с водой огнезащитная эффективность пропиток древесины может быть частично или полностью утрачена. Традиционные для деревянных конструкций пропитки практически не способны повысить предел огнестойкости и класс пожарной опасности конструкций [74].

В настоящее время для огнезащиты деревянных и металлических элементов и конструкций применяют широкий спектр огнезащитных покрытий на основе растворимых в воде и органических растворителях пленкообразующих веществ, отличающихся довольно широким диапазоном огнезащитной эффективности (Таблица 1.1).

Таблица 1.1 – Огнезащитная эффективность покрытий для защиты деревянных и металлических конструкций

|                                   | Критерий оценки                                          |                                    |                            |  |  |
|-----------------------------------|----------------------------------------------------------|------------------------------------|----------------------------|--|--|
| Основа огнезащитного покрытия     | Относительная потеря массы (для древесины) $\Delta$ m, % | Защитное время нагрева (для стали) | Коэффициент<br>вспучивания |  |  |
| Жидкое стекло                     | 3–6                                                      |                                    | 15–18                      |  |  |
| Карбамидоформальдегидная смола    | 7–11                                                     | 60–90 мин,                         | 21–25                      |  |  |
| Водная дисперсия поливинилацетата | 8–10                                                     | приведенная толщина металла        | 20–23                      |  |  |
| Поливинилацетат                   | 7–9                                                      | 3,4 мм,<br>толщина                 | 18–22                      |  |  |
| Раствор перхлорвиниловой смолы    | 28–30                                                    | покрытия до 3 мм                   | 25–27                      |  |  |
| Эпоксидный полимер                | 6–13                                                     |                                    | 18–20                      |  |  |

Анализируя данные Таблицы 1.1, можно сделать вывод, что при создании рецептур огнезащитных покрытий основное внимание уделяется определению только одного параметра — огнезащитной эффективности по таким критериям оценки, как относительная потеря массы после огневых испытаний, защитное время нагрева и кратность вспучивания. Однако конкретные значения показателей эксплуатационных свойств (водостойкость, влагостойкость и др.) не раскрываются, что можно объяснить высокой трудоемкостью и временными затратами испытаний по определению прогнозированного срока службы огнезащитного покрытия [75].

Перечень имеющихся огнезащитных покрытий вспучивающегося типа достаточно обширен и продолжает увеличиваться. При этом на огнезащитную эффективность защитных покрытий оказывает влияние изменение свойств в различных сочетаниях и по многим параметрам.

Кроме того, возможность математического моделирования позволяет существенно повысить огнезащитные свойства вспучивающихся покрытий по сравнению с обычными огнезащитными материалами.

Таким образом, результаты патентно-информационных исследований показали, что научные принципы обоснования параметров огнезащитных покрытий путем установления зависимостей, характеризующих степень их

воздействия на огнезащитные свойства, в настоящее время разработаны не в полном объеме. Также не выделены четкие критерии оценки параметров огнезащитных покрытий.

В комплекс обязательных характеристик огнезащитных покрытий, стойких к воздействию внешних факторов, должны входить параметры, характеризующие устойчивость покрытия к воздействию воды, влажности, а также стойкости покрытия в отношении переменного воздействия температуры и влажности, в зависимости от условий эксплуатации покрытий, что позволит в полной мере оценить огнезащитную эффективность и спрогнозировать срок эксплуатации огнезащищенной конструкции.

### 1.3. Положения нормативных требований в контексте совершенствования огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций

Здания, сооружения, пожарные отсеки подразделяют степеням ПО огнестойкости согласно положениям, установленным в документе [76]. Определено пять степеней огнестойкости зданий, для каждой из которых существуют требуемые пределы огнестойкости строительных конструкций, которые соответствуют времени достижения одного или последовательно нескольких признаков предельных состояний:

- -R потеря несущей способности,
- -E потеря целостности,
- -I— потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (Таблица 1.2) [77].

Пределы огнестойкости строительных конструкций и их условные обозначения определяют по стандарту [78]. Каждое предельное состояние — это состояние, после которого конструкция утрачивает способность выполнять свои функции. Наиболее очевидным предельным состоянием является предельное

состояние по несущей способности конструкции R, достижение которого соответствует разрушению конструкции.

Таблица 1.2 – Требуемые пределы огнестойкости строительных конструкций

| Строительные конструкции                                        | Степень огнестойкости зданий, сооружений,<br>строений и пожарных отсеков |               |               |               |                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------|---------------|---------------|----------------|
| отронтоные конструкции                                          | I                                                                        | II            | III           | IV            | V              |
| Несущие стены, колонны и другие несущие элементы                | R 120                                                                    | R 90          | R 45          | R 5           |                |
| Наружные ненесущие стены                                        | E 30                                                                     | E 15          | E 15          | E 15          | не нормируется |
| Перекрытия междуэтажные (в том числе чердачные и над подвалами) | REI 60                                                                   | <i>REI</i> 45 | <i>REI</i> 45 | <i>REI</i> 15 |                |
| Элементы бесчердачных покрытий:                                 |                                                                          |               |               |               |                |
| -настилы (в том числе с утеплителем)                            | RE 30                                                                    | <i>RE</i> 15  | <i>RE</i> 15  | <i>RE</i> 15  |                |
| -фермы, балки, прогоны                                          | RE 30                                                                    | <i>RE</i> 15  | <i>RE</i> 15  | <i>RE</i> 15  | не нс          |
| Лестничные клетки                                               |                                                                          |               |               |               |                |
| -внутренние стены                                               | <i>REI</i> 120                                                           | <i>REI</i> 90 | <i>REI</i> 60 | <i>REI</i> 45 |                |
| -марши и площадки лестниц                                       | R 60                                                                     | R 60          | R 45          | R 15          |                |

Пределы огнестойкости строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическим методом, установленным нормативными документами по пожарной безопасности. Для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции.

Обязательная противопожарная обработка деревянных конструкций зафиксирована в нормативно-правовых актах, среди них можно выделить:

- СТО 43.29.11 «Огнезащита деревянных конструкций в построечных условиях», который разработан для защиты от возгорания древесины, пиломатериалов и конструкций из дерева и описывает процедуру огнезащиты деревянных конструкций в построечных условиях; документ обозначает требования, как к самому покрытию, так и к специальным пропиткам;

– ГОСТ Р 53292-2009 «Огнезащитные составы и вещества для древесины и материалов на ее основе. Общие требования. Методы испытаний», который регламентирует стандарты, применяемые при изготовлении огнезащитных составов для древесины и схожих с ней материалов, определяет коэффициенты их огнестойкости.

Предел огнестойкости деревянных конструкций определяется по методам, установленным стандартами [77; 78].

Предел огнестойкости деревянных элементов конструкций допускается устанавливать расчетным путем на основе закономерностей обугливания и сечений в условиях стандартного теплового прогрева регламентируемого [77], а также с учетом предельных состояний по огнестойкости, регламентируемых [78]. Основными параметрами, необходимыми для расчета пределов огнестойкости деревянных конструкций, являются температура начала обугливания древесины и условная скорость обугливания. Температура начала обугливания достигается на поверхности древесины через 4 мин после начала стандартного теплового воздействия пожара и составляет 270 °C [79]. Условную скорость обугливания перемещения фронта обугливания, скорость ИЛИ включающую влияние угловых закруглений, для древесины хвойных пород следует принимать постоянной и равной 0,7 мм/мин [79]. За фронтом обугливания температура древесины снижается по гиперболическому закону.

Предел огнестойкости узлов соединения элементов и опорных узлов деревянных конструкций, в том числе с применением металлических и неметаллических деталей и элементов, должен быть не ниже требуемого предела огнестойкости конструкции в целом. Предел огнестойкости деревянных элементов конструкции и узлов их соединения может быть повышен за счет увеличения размеров их сечения, использования средств огнезащиты или теплоизолирующих материалов и облицовок, в том числе из пиломатериалов.

Требуемая огнестойкость металлических элементов и узлов соединения элементов конструкции с применением металлических закладных деталей, может быть достигнута их обработкой огнезащитными покрытиями для деревянных

конструкций. В целях повышения пожарной безопасности к моменту времени, соответствующему требуемому пределу огнестойкости конструкции, температура нагрева металла в местах соприкосновения с древесиной не должна превышать 270 °C [79].

В конструкциях составного или коробчатого сечения открытые (незамкнутые) зазоры между цельными элементами сечения не должны превышать 7 мм, а зазоры более 7 мм должны быть замкнуты продольными диафрагмами толщиной, обеспечивающей нераспространение огня в зазор в течение времени требуемого предела огнестойкости конструкции [79].

Авторами научной статьи [80] отмечена перспективность применения вспучивающихся покрытий для обеспечения огнезащиты не только деревянных конструкций, но и узлов соединения их элементов. Учитывая многообразие вариантов конструктивного исполнения узлов, оценка их огнестойкости при огневых испытаниях – трудноразрешимая задача. В связи с этим, целесообразно совершенствовать расчетные методы (взаимосвязанные теплотехнические и статические расчеты) для оценки фактических пределов огнестойкости не только конструкций из древесины, но и узлов. Обеспечение эффективной огнезащиты деревоклееных конструкций и узлов должно способствовать увеличению объема применения конструкций из древесины при строительстве важных объектов и обеспечению требуемого уровня их пожарной безопасности.

## 1.4. Обзор методов и результатов определения влияния внешних факторов на огнезащитную эффективность покрытий для деревянных и металлических конструкций

В длительный период эксплуатации огнезащитных покрытий постепенно происходит их старение с последующим разрушением. Процессы старения огнезащитных покрытий связаны с происходящими в них необратимыми химическими, физическими, физико-химическими процессами под воздействием различного рода внешних и внутренних факторов. Помимо внешних признаков

разрушения покрытий, которые можно оценить визуально — растрескивание, отслаивание, вздутие, потеря глянца, изменение цвета, при старении изменяются механические, химические, электрические, оптические и другие параметры огнезащитных покрытий. Со временем огнезащитное покрытие частично или полностью теряет свои защитные функции, и в этой связи требуется его замена [81; 82]. Проблема изменения основных свойств вспучивающихся покрытий и их огнезащитной эффективности становится особенно актуальной при эксплуатации защищаемых конструкций и изделий на многих ответственных объектах ракетно-космической, авиационной, атомной и других отраслей [10; 27].

Кислород воздуха, теплосмены, вода, ультрафиолетовое излучение и другие факторы обусловливают атмосферное старение огнезащитных покрытий.

Процессы старения и дальнейщего разрушения огнезащитных покрытий происходят намного быстрее в условиях открытой атмосферы, чем в закрытых помещениях. К основным причинам разрушения огнезащитных покрытий относят фотохимические реакции, инициируемые солнечным светом, процессы окислительной и гидролитической деструкции, происходящие под влиянием кислорода, озона и содержащейся в атмосфере воды. Кроме того, высокая интенсивность солнечной радиации, влажности воздуха и скорости ветра приводят к ускорению процесса старения и разрушения огнезащитных покрытий.

Чем выше химическая стойкость пленкообразователя и стабильнее его структура в покрытии, тем оно менее подвержено внешним изменениям. Поэтому изучение процесса старения огнезащитных покрытий общего назначения, как правило, производится в определенных условиях под действием отдельных факторов [84; 85].

Разрушение огнезащитных покрытий под действием солнечного света в начальной стадии старения обусловлено фотоокислительной деструкцией. В процессе фотоокисления покрытий образуются жидкие и газообразные продукты деструкции, что нарушает структуру покрытия и может привести к уменьшению его огнезащитной эффективности.

Старение покрытий под действием повышенных, отрицательных знакопеременных температур связано c термической деструкцией пленкообразователя И процессами структурообразования. Повышенные температуры приводят к термической деструкции полимера, а также изменению покрытий улетучивания структуры за счет остаточного растворителя, пластификатора и других веществ, входящих в систему. При циклическом воздействии знакопеременных температур возможно возникновение микротрещин.

На огнезащитные покрытия в процессе длительной эксплуатации в значительной степени воздействуют атмосферный кислород и влага воздуха. К агрессивным средам могут быть отнесены кислоты, щелочи и другие вещества, влияние которых на покрытие во многом зависит от особенностей условий эксплуатации. Вода, растворители, масла и другие химические соединения, как физически агрессивные среды, вызывают обратимые физические процессы в полимерных пленках без разрушения химических связей основных полимерных цепей. Действие выше перечисленных соединений приводит к набуханию поверхности огнезащитного покрытия с появлением вздутий и пузырей на его поверхности. Кислород воздуха, неорганические и органические кислоты, основания, водные растворы солей относятся к химическим агрессивным средам, которые вызывают необратимые химические процессы в материале огнезащитного покрытия. Эти процессы сопровождаются химическими реакциями с изменением структуры, что приводит к старению и последующему разрушению огнезащитных покрытий.

В основном изучены химические процессы, связанные с окислением пленкообразователя при формировании покрытий, — окислительной деструкцией. Особенно эффективно окислительная деструкция протекает в атмосферных условиях, этому процессу способствует воздействие солнечного излучения [85].

Диффузия и растворимость кислорода в пленке, наличие в ней реакционноспособных групп — основные факторы, обусловливающие старение (окисление) огнезащитных покрытий под действием кислорода. Таким образом, отсутствие свободных функциональных групп создает благоприятные условия для

стойкости огнезащитных покрытий. На химической стойкости огнезащитных покрытий сказываются и структурные факторы материала покрытия. Практика показывает, что, независимо от характера среды, наибольшей химической стойкостью обладают покрытия на основе кристаллических и пространственносшитых аморфных полимеров.

Огнезащитные покрытия, представленные на рынке, подлежат обязательной сертификации. Сертификационные испытания проводятся только на огнезащитную эффективность по методу [86], при котором оценивается способность образца, покрытого огнезащитным средством, сопротивляться огню и сохранять температуру ниже критической (500 °C).

Анализ зарубежных норм показал, что существуют различия в методах испытания на огнестойкость стальных несущих конструкций с огнезащитой и критериев оценки их огнестойкости. В Российской Федерации критерием огнестойкости стальных конструкций с огнезащитой является достижение критической температуры на поверхности строительной конструкции. Согласно зарубежным нормативным документам, аналогичные испытания проводятся под нагрузкой, а в качестве критерия огнестойкости принимают потерю несущей способности конструкции вследствие достижения критических деформаций.

Для сравнения, огнезащитные покрытия для древесины при сертификации проходят помимо испытания на огнезащитную эффективность, но проводится испытание на устойчивость к старению по методу, регламентированному [87]. Кроме того, приводятся сведения по группе горючести, воспламеняемости, дымообразующей способности и токсичности продуктов горения огнезащитного покрытия [88; 89]. Информация по параметрам климатической устойчивости и устойчивости к агрессивным средам огнезащитных покрытий в сертификатах образом, соответствия отсутствует. Таким испытания, проводимые сертификации огнезащитных покрытий, позволяют оценивать только один параметр – огнестойкость обработанного огнезащитой образца в лабораторных условиях без учета воздействия агрессивной среды и атмосферы.

Кроме того, проведенный анализ патентных исследований показал, что атмосфероустойчивые, большинство патентов на химически устойчивые огнезащитные покрытия не содержат информацию о применяемых методиках параметров испытаний ПО определению климатической химической устойчивости [90]. Данные факты указывают на отсутствие единого методического подхода к определению параметров климатической и химической устойчивости огнезащитных покрытий.

Некоторые разработчики огнезащитных покрытий используют стандартные методы по [90], которыми предусмотрены испытания, отличающиеся количеством воздействующих факторов, их периодичностью и уровнем воздействия. Выбор метода зависит от требуемых климатических условий дальнейшей эксплуатации огнезащитных покрытий. После проведения ускоренных испытаний образцы подвергают исследованию по методам оценки адгезии согласно стандарту [91] и по методам оценки внешнего вида — по стандарту [92].

ФГБУ ВНИИПО МЧС России разработана методика [93], которая устанавливает порядок, правила и методы испытаний и исследований огнезащитных покрытий. Согласно этой методике [93], сохранение огнезащитных свойств оценивается после ускоренного старения по методу определения теплоизолирующих свойств огнезащитных покрытий по металлу, изложенному в [94], либо методом термического анализа. Метод определения теплоизолирующих свойств огнезащитных покрытий заключается в определении времени прогрева необогреваемой стороны образца до критической температуры (для стали 500 °C) в процессе испытаний.

Для оценки огнезащитной эффективности огнезащитных покрытий используют следующие методы термического анализа:

- термогравиметрический,
- термогравиметрический по производной,
- дифференциально-термический,
- дифференциально-сканирующая калориметрия.

Программное обеспечение должно представлять зависимость «сигнал – температура» или «сигнал – время» в виде кривой. Сущность метода заключается в сравнении значимых термоаналитических характеристик (идентификационных параметров) образцов покрытий (объектов с огнезащитой) с «эталонными» данными. Под «эталонными» понимаются данные, представленные в технической документации на производство проверяемых огнезащитных покрытий или (сертификационных) образцов полученные при первичных испытаниях огнезащитных покрытий. Сравнению подлежат термоаналитические характеристики и параметры, полученные только при полностью одинаковых условиях на приборах одного класса точности.

Итак, каждый материал огнезащитного покрытия имеет определенный набор термического анализа кривых и параметров, характерных только для его рецептуры. Экспериментально установлено, что любые, даже незначительные, изменения в рецептуре материала огнезащитного покрытия влекут за собой изменения в термическом анализе кривых и идентификационных характеристиках. На этом и основано применение экспериментального метода термического анализа для идентификации огнезащитных покрытий при испытаниях на пожарную опасность (огнезащитную эффективность) и для контроля качества огнезащитных работ [95; 96]. В научной литературе многие эксперты заявляют, что оценить огнезащитную эффективность исключительно методами термического анализа невозможно, но можно провести идентификацию огнезащитного покрытия [97].

В странах общего европейского рынка товары и услуги должны отвечать требованиям соответствующей директивы ETAG 018 Fire protective products (Средства противопожарной защиты) — законодательному инструменту, который устанавливает обязательные требования к продукции в процессе проектирования, изготовления, реализации и утилизации. Для того, чтобы показать соответствие продукции основным требованиям директив, на изделия наносится специальная маркировка (СЕ — маркировка), которая показывает, что данная продукция может беспрепятственно распространяться на внутреннем рынке Европейского содружества.

Методики испытаний и оценки эксплуатационных параметров строительных изделий, на которых основываются заключения органов по подтверждению соответствия, базируются на основных положениях и рекомендациях ЕТАG (нормы европейского технического свидетельства), выдаваемых ЕОТА (Европейской организацией по технической аттестации). ЕОТА включает уполномоченные организации (Approval Bodies) на выпуск Европейских технических одобрений (European Technical Approvals – ETAs), подтверждаемых государствами – членами ЕС и государствами – членами, которые входят в Европейскую экономическую зону.

Рабочей группой EOTA 11.01/04 «Fire Protective Products» выпущены руководства ETAG для средств огнезащиты строительных конструкций:

- 1) ETAG 018. Fire protective products. Part 1: General («Средства противопожарной защиты. Часть 1: Общие требования»);
- 2) ETAG 018-2. Fire protective products. Part 2: Reactive Coatings for Fire Protection of Steel Elements («Средства противопожарной защиты. Часть 2: Реактивные покрытия для огнезащиты стальных элементов»);
- 3) ETAG 018. Fire protective products. Part 3: Renderings and rendering kits intended for fire resisting applications («Средства противопожарной защиты. Часть 3: Обмазки и штукатурные системы, предназначенные для повышения огнестойкости»);
- 4) ETAG 018. Fire protective products. Part 4: Fire Protective Board, Slab and Mat Products and Kits («Средства противопожарной защиты. Часть 4: Огнезащитная облицовка панелями, плитами, матами и конструкционными системами»).

По условиям эксплуатации огнезащитные покрытия делятся на:

- тип X: система реактивного покрытия применяется для условий внутри помещения, под навесом и наружных условий эксплуатации;
- тип Y: система реактивного покрытия для внутренних условий эксплуатации и под навесом, которая включает температуру ниже нуля, но не под открытым дождем и не допускает воздействие ультрафиолетового излучения;

- тип Z1: система реактивного покрытия, предназначенная для условий эксплуатации внутри помещения, исключая температуру ниже нуля, с высокой влажностью;
- тип *Z*2: система реактивного покрытия, предназначенная для внутренних условий, исключая температуру ниже нуля, с классом влажности за исключением *Z*1.

Соответственно, продукты, которые соответствуют требованиям типа X, отвечают требованиям для всех других типов, что соответствует требованиям для типа Y, также отвечают требованиям для типов Z1 и Z2. Продукты, соответствующие требованиям для типа Z1, также отвечают требованиям для типа Z2.

Возможные факторы старения при сроке эксплуатации и / или долговечности огнезащитных покрытий определяются с использованием категорий, представленных в документе Руководство ЕОТА 003 «Assessment of working life of products» («Оценка долговечности продукции»).

После выбора категории, учитывающей условия эксплуатации огнезащитного покрытия, проводятся ускоренные испытания по соответствующей категории схеме. Например, испытания на воздействие внешней среды по  $ETAG\ 018\ Tun\ X$  (атмосферное воздействие):

- Первый этап состоит из 112 циклов (эквивалентно 28 дням), включающих 5 ч воздействия ультрафиолетового излучения в сухой среде при 50 °C ( $\pm$  3 °C) с относительной влажностью 10 % ( $\pm$  5 %) и 1 ч орошения водой при 20 °C ( $\pm$  3 °C).
- Второй этап состоит из трех циклов, когда покрытие подвергается резкой смене температуры и влажности. В соответствии с ETAG 018-2. «Fire protective products. Part 2: Reactive Coatings for Fire Protection of Steel Elements» после ускоренных испытаний по выбранной схеме определяют предел огнестойкости образца металлической конструкции по стандарту BS476: Part 20: 1987 «Fire tests on building materials and structures. Method for determination of the fire resistance of elements of construction» («Огневые испытания строительных материалов и конструкций. Метод определения огнестойкости элементов конструкции»). Метод

устанавливает предел огнестойкости конструкции после воздействия факторов, моделирующих предполагаемые условия эксплуатации.

Для применения на внутреннем рынке Европейского содружества огнезащитные покрытия должны соответствовать положениям специальных руководств, распространяющимся только на средства огнезащиты (ETAG). Положения **ETAG** предусматривают оценку сохранения огнезащитной эффективности покрытия после воздействия внешних факторов.

Для более четкого понимания и сравнения методической базы представлена схема (Рисунок 1.1), включающая нормативную и методическую базу по вопросу влияния внешних факторов на свойства огнезащитных покрытий для деревянных и металлических конструкций.

Таким образом, ключевыми параметрами, по которым возможно проводить комплексную оценку огнезащитной эффективности и прогноза службы огнезащитных покрытий, считаем следующие: водопоглощение, влагопоглощение, переменное воздействие температуры и влажности, огнезащитная эффективность.

Количественными критериями оценки водопоглощения, ДЛЯ влагопоглощения, переменного влияния температуры и влажности принято изменение массы, для оценки огнезащитной эффективности – относительная потеря массы (защита древесины), защитное время прогрева (защита металла) и коэффициент вспучивания. Анализ фактических огнестойкости пределов строительных конструкций различных ТИПОВ показал, ЧТО наименьшую огнестойкость имеют деревянные и металлические конструкции, большинство которых не соответствуют требуемым пределам огнестойкости и нуждаются в огнезащите. Методы определения эксплуатационных параметров проводятся по стандарту [90], который не предназначен для испытаний огнезащитных покрытий.

Разработка рецептур и исследование эффективности огнезащитных покрытий только экспериментальными методами [97; 98] представляет собой серьезную проблему, которая заключается в трудоемкости проведения экспериментов и сложности получения полной информации, отражающей поведение огнезащитного материала под воздействием пожарной нагрузки.

#### 39 МЕТОДЫ ОЦЕНКИ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ Металлические конструкции Деревянные конструкции ГОСТ Р 53295-2009 «Средства огнезащиты ГОСТ Р 53292-2009 «Огнезащитные составы и стальных конструкций. Общие вещества для древесины и материалов на ее требования. Метод определения основе. Общие требования. Методы огнезащитной эффективности»: испытаний»: носит обязательный характер, носит обязательный характер, устанавливает метод определения устанавливает метод контроля качества огнезащитной эффективности, используемый огнезащитной обработки, при сертификации средств огнезащиты устанавливает метод определения группы (образец двутаврового сечения длиной огнезащитной эффективности, 1700 мм), а также необязательные огневые описан метод определения устойчивости к испытания. старению. Указывается, что в технической документации на средства огнезащиты должна содержаться информация о гарантийном сроке и условиях эксплуатации средства огнезащиты (предельные значения влажности, температуры окружающей среды и т. п.) «Оценка допустимого срока эксплуатации «Способы и средства огнезащиты древесины». Руководство, ВНИИПО: тонкослойных огнезащитных покрытий различных климатических условиях». носит необязательный характер; Методика, ВНИИПО: описаны методы: определение носит необязательный характер; огнезащитной эффективности, испытание на указывается, что искусственное устойчивость к старению, гигроскопичность,

После ускоренного старения оценивается

ускоренное старение образцов покрытий

вместе с подложкой проводится

в соответствии с ГОСТ 9.401.

сохранение огнезащитных свойств по методу определения теплоизолирующих свойств огнезащитных покрытий по металлу.

эластичности, прочности при ударе, срока службы огнезащитной обработки, методы

контроля качества составов и приемки

водостойкость, определение адгезии,

огнезащитных работ.

ГОСТ 9.401-91 (EC3КС) «Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов»:

- носит необязательный характер,
- предназначен для лакокрасочных покрытий

(в системе EC3КС огнезащитные средства не вынесены как вид лаков и красок),

- описаны методы ускоренных испытаний лакокрасочных покрытий металлических и неметаллических поверхностей изделий (образец размером 150 × 70 мм).
- размеры аппаратов, используемых при испытаниях, соответствуют ГОСТ Р 9.401-91.

Рисунок 1.1 – Нормативная и методическая база оценки огнезащитных покрытий для деревянных и металлических конструкций

Таким образом, использование методов численного позволяющих получать требуемые параметры максимально точно и достоверно, приобретает все большее значение при разработке многокомпонентных огнезащитных покрытий. По мнению исследователей [99], это может быть обусловлено возможностью многовариантного анализа для широкого набора параметров структурообразования дисперсно-наполненных полимерных композитов.

При разработке научно обоснованного рецептурно-технологического решения, обеспечивающего получение полифункционального огнезащитного покрытия на основе полимерной матрицы с повышенными показателями огнестойкости и стойкости к воздействию внешних факторов, актуальность численного моделирования существенно возрастает [62; 72; 100–104].

Следует отметить, что материал огнезащитного покрытия может считаться полифункциональным, если при его разработке была поставлена задача оптимизации по параметрам из, как минимум, двух различных групп [104]. Материал, оптимизируемый по показателям стойкости к внешним воздействиям (водостойкость, влагостойкость, стойкость к переменному воздействию температуры и влажности) и техногенным (огнестойкость) факторам, можно считать полифункциональным, так как в основе обеспечения высоких значений этих параметров лежат различные явления, и положительная корреляция обеспечивается взаимосвязью между структурой и свойствами материала покрытия.

В целом, результаты анализа патентной информации свидетельствуют, что известные технологические решения по созданию огнезащитных покрытий основаны на феноменологических закономерностях и в недостаточной степени опираются на исследования взаимосвязей и дальнейшего установления степени влияния внешних факторов на огнезащитные и другие эксплуатационные параметры полифункциональных огнезащитных покрытий, а также возможности математического моделирования их состава.

### 1.5. Выводы к Главе 1. План диссертационного исследования

1. Анализ причин возникновения пожаров показал, что деревянные и металлические конструкции, используемые в современном в строительстве, не

соответствуют требуемым пределам огнестойкости и нуждаются в пассивной огнезащите, что существенно повышает актуальность разработки более эффективных огнезащитных средств, к которым относятся огнезащитные покрытия вспучивающегося типа.

- 2. Известные технологические решения в области разработки огнезащитных покрытий в недостаточной степени опираются на исследования взаимосвязей технологии, структуры и свойств покрытий. Не в достаточной мере обоснованы ключевые компоненты, которые обеспечивают высокую огнезащитную эффективность и эксплуатационные свойства на этапе разработки рецептур полифункциональных огнезащитных покрытий для деревянных и металлических конструкций, отличающихся повышенной устойчивостью к воздействию внешних факторов.
- 3. Не в полном объеме обоснована классификация параметров огнезащитных покрытий, основанная на едином подходе при обосновании критериев оценки эксплуатационных параметров огнезащитных покрытий для деревянных и металлических конструкций, что не позволяет определять эффективность их влияния на огнезащитную способность покрытий.
- 4. Не полностью раскрыты и научно обоснованы критерии комплексной воздействия внешних факторов параметры, оценки на включающие водопоглощение, влагопоглощение, переменное воздействие температуры влажности, огнезащитную эффективность (защита древесины) теплоизоляционные свойства (защита металла). Прогноз сохранения параметров огнезащитных покрытий и срока службы огнезащищенной конструкции в целом в результате воздействия внешних факторов является малоисследованным и актуальным направлением, которое позволит повысить огнестойкость деревянных и металлических конструкций в условиях пожара.
- 5. Оптимальным вариантом при создании рецептур огнезащитных покрытий перспективным представляется использование математических методов решения задач планирования эксперимента, что обусловлено возможностью многовариантного анализа.

Исходя из сформулированной цели и поставленных задач разработан план диссертационного исследования (Рисунок 1.2).



Рисунок 1.2 – План диссертационного исследования

В соответствии с положениями системно-структурного подхода [105; 106] исследование разделено на две взаимосвязанные стадии теоретических и экспериментальных исследований.

Первая стадия (теоретические исследования) диссертационной работы включала:

1. Анализ методических принципов обоснования параметров огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций на базе теоретических исследований (Глава 1, п. 1.2).

- 2. Анализ и обобщение положений нормативных требований в контексте совершенствования огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций (Глава 1, п. 1.3).
- 3. Обзор методов определения воздействия внешних факторов на огнезащитную эффективность покрытий для деревянных и металлических конструкций (Глава 1, п. 1.4).
- 4. Научное обоснование классификации параметров огнезащитных покрытий на теоретической базе концепции совершенствования параметров огнезащитных покрытий (Глава 3, п. 3.2).

Вторая стадия (экспериментальные исследования) включала:

- 1. Обоснование концепции совершенствования параметров огнезащитных покрытий всучивающегося типа для деревянных и металлических конструкций (Глава 3).
- 2. Исследования по разработке рецептуры нового состава для получения вспучивающегося огнезащитного покрытия (Глава 3, п. 3.3).
- 3. Исследования по воздействию воды, влажности и стойкости в отношении переменного воздействия температуры и влажности окружающей среды на огнезащитные свойства покрытия (Глава 4, п. 4.1).
- 4. Оценку огнезащитных свойств вспучивающегося огнезащитного покрытия после воздействия на него внешних факторов (Глава 4, п. 4.2).
- 5. Исследование параметров вспучивания огнезащитного покрытия (Глава 4, п. 4.3).
- 6. Оптимизацию свойств вспучивающегося огнезащитного покрытия путем моделирования компонентного состава (Глава 5).

#### ГЛАВА 2.

### ПРОГРАММА И МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Разработка рецептуры состава для получения эффективного огнезащитного покрытия вспучивающегося типа для деревянных и металлических конструкций возможна при условии уменьшения количества или исключения растворимых в воде компонентов.

При высокотемпературном тепловом воздействии в огнезащитных покрытиях должны происходить фазовые переходы, связанные с поглощением тепла и выделением газообразных продуктов, образующих пористую структуру, обладающую повышенной теплоизолирующей способностью, или образующую химические соединения, препятствующие процессу воспламенения и горения.

Процесс вспучивания огнезащитного покрытия должен проходить в температурном интервале 100–450 °C в зависимости от критической температуры защищаемого материала. При обычной температуре огнезащитное покрытие должно сохранять свои функции отделочного слоя с требуемой долговечностью.

Решение задачи улучшения эксплуатационных параметров огнезащитных покрытий базируется на теоретических положениях физико-химических процессов термолиза, процессов поверхностных явлений и заключается в создании термодинамически устойчивого водонерастворимого слоя, совместимого со вспучивающими добавками и пленкообразующим веществом защитного слоя покрытия.

### 2.1. Обоснование выбора исходных материалов для создания рецептуры огнезащитного покрытия

Для решения первой задачи исследований был обоснован выбор исходных материалов, физико-химические свойства которых способствуют повышению стойкости огнезащитного покрытия к воздействию внешних факторов. В качестве

основных компонентов в рецептурном составе огнезащитного покрытия вспучивающегося типа взяты связующее пленкообразующее вещество и целевые добавки, обеспечивающие высокие эксплуатационные свойства покрытия.

### Обоснование выбора пленкообразующего вещества

В настоящей работе в качестве связующего пленкообразующего вещества использован полярный непредельный хлоропреновый каучук марки CR2322, его основные показатели приведены в Таблице 2.1 [107].

Таблица 2.1 – Основные физические свойства и химическая формула хлоропренового каучука

| Химическая формула                                                                   | Наименование показателя                             | Значение              |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|
|                                                                                      | Плотность при 25 °C, кг/м <sup>3</sup>              | 1200,0–1240,0         |
| $(-H_2C-CCl=CH-CH_2-)_n$                                                             | Относительная средняя молекулярная масса            | $(1,5-1,7)\cdot 10^4$ |
| где <i>п</i> – число звеньев мономера (хлоропрена) в молекуле хлоропренового каучука | Удельное объемное электрическое сопротивление, Ом·м | $4,4 \cdot 10^6$      |
|                                                                                      | Температура стеклования, °С                         | от -43,0 до -40,0     |
|                                                                                      | Электрическая прочность, МВ/м                       | 23,0                  |
|                                                                                      | Диэлектрическая проницаемость, Ф/м                  | 6,4–6,7               |

Выбор хлоропренового каучука в качестве матричного материала, в первую очередь, был обусловлен решающим влиянием регулярного строения его молекулы на способность данного вещества к кристаллизации при естественных условиях с образованием когезионной поверхностной пленки.

Кроме того, с точки зрения необходимости создания эффективного вспучивающегося огнезащитного покрытия, к наиболее важным достоинствам хлоропренового каучука, как связующего пленкообразующего вещества, можно отнести следующие характеристики:

- устойчивость к воздействию открытого огня, что объясняется высоким содержанием хлора около 40 % [107],
  - высокая адгезия (способность склеиваться) к древесине и металлу,
  - стойкость к атмосферному воздействию,

- стойкость к естественному окислению (устойчивость к старению),
- стойкость к истиранию и низкой температуре.

Хлоропреновый каучук хорошо растворим в ароматических углеводородах, таких как бензол, бензин, толуол, ксилол или в их смесях — нефтяном сольвенте, например. В результате растворения хлоропренового каучука в ароматических растворителях образуется устойчивый полимерный коллоидный раствор.

### Обоснование выбора вспучивающей добавки

Выбор вспучивающей добавки оказывает существенное влияние на требуемые параметры режима образования и качество вспененного кокса, следовательно, и на огнезащитные свойства полученного покрытия.

В настоящей работе функцию вспучивающего агента в составе огнезащитного покрытия выполняет комбинированная добавка, в качестве интумесцентных компонентов которой были использованы:

1. Полифосфат аммония (NH<sub>4</sub>PO<sub>3</sub>)<sub>n</sub> (кристаллическая фаза II, степень полимеризации более 1000) по GH/T2770-2008 (китайский национальный стандарт), основные физические свойства и структурная формула [109] которого приведены в Таблице 2.2.

Таблица 2.2 – Структурная формула и основные физические свойства полифосфата аммония (фаза II)

| Структурная формула                                                                                         | Наименование показателя                                 | Значение         |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|
|                                                                                                             | Внешний вид                                             | Белый<br>порошок |
|                                                                                                             | Массовая доля оксида фосфора, %                         | 72,4             |
|                                                                                                             | Массовая доля азота, %                                  | 14,4             |
| HO_P_O+P_O+P_OH<br>  O <sub>o</sub> O <sub>o</sub> O <sub>o</sub>                                           | Водородный показатель (10 % водный раствор), единицы рН | 6,3              |
| $\Theta_{\Theta}$ $\Theta_{\Theta}$ $\Theta_{\Theta}$ $\Theta_{\Theta}$ $\Theta_{\Theta}$ $\Theta_{\Theta}$ | Растворимость (г/100 мл H <sub>2</sub> O при 25 °C)     | -0,5             |
|                                                                                                             | Вязкость (10 % водный раствор при 25 °C), Па $\cdot$ с  | 20,0 · 10-3      |
|                                                                                                             | Размер частиц (< 50 мкм)                                | 99,7             |

Основные физические свойства полифосфата аммония (фаза II), представленные в Таблице 2.2, приведены согласно паспорту завода-изготовителя (Shifang Changfeng Chemical Co., Ltd., Китай). Размер частиц полифосфата аммония по данным [108] составляет 1–10 мкм.

2. Хлорпарафин XП-66T по CTO 00203275-212-2008. Хлорпарафин XП-66T представляет собой линейный хлористый полимер — смесь хлорированных парафинов с длиной цепи  $C_{12}-C_{30}$ , не содержит четыреххлористого углерода.

В Таблице 2.3 приведены основные свойства хлорпарафина XП-66T согласно паспорту завода-изготовителя (АО «Каустик», г. Волгоград, Россия).

Таблица 2.3 – Основные физические свойства хлорпарафина ХП-66Т

| Наименование показателя                                                                  | Значение                                                |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Внешний вид                                                                              | Порошок от светло-кремового до светло-коричневого цвета |
| Массовая доля хлора, %                                                                   | 70,20                                                   |
| Температура начала плавления, °С                                                         | 72,00                                                   |
| Термостабильность в пересчете на массовую долю отщепленного хлористого водорода (HCl), % | 0,12                                                    |
| Массовая доля остатка на сите с сеткой 0,4 К, %                                          | 1,80                                                    |

К особым свойствам хлористого парафина XT-66T можно отнести его трудную горючесть, пожаро- и взрывобезопасность.

- 3. Меламин ( $C_3H_6N_6$ ) по GB/T 9567-2016 (китайский национальный стандарт). В Таблице 2.4 приведены основные физические свойства (согласно сертификату завода-изготовителя Zibo Aiheng New Material Co., Ltd.) и структурная формула меламина [109].
- 4. Терморасширяющийся графит марки EG350-8095 производства JLS Chemical. Данный терморасширяющийся графит является продуктом интеркалирования серной кислоты в межслойное пространство кристаллической решетки графита в присутствии окислителей перекиси водорода и перманганата калия.

Добавка терморасширяющегося графита в качестве дополнительного вспучивающего агента способствует усилению эффекта процесса вспучиваемости и получению вспененного кокса с низкой теплопроводностью и меньшей летучестью. Основные физические свойства терморасширяющегося графита марки EG350-8095 приведены в Таблице 2.5 [110].

Таблица 2.4 – Структурная формула и физические свойства меламина

| Структурная формула | Наименование показателя           | Значение                      |
|---------------------|-----------------------------------|-------------------------------|
|                     | Внешний вид                       | Белый кристаллический порошок |
| NH <sub>2</sub>     | Основное вещество, %              | 99,85                         |
|                     | Влажность, %                      | 0,07                          |
|                     | Зольный остаток, %                | 0,03                          |
| $H_2N$ $N$ $NH_2$   | Цветность                         | 20,00                         |
|                     | Мутность                          | 20,00                         |
|                     | Водородный показатель, единицы рН | 7,90                          |

Таблица 2.5 – Основные свойства терморасширяющегося графита марки EG350-8095

| Наименование показателя                    | Значение       |
|--------------------------------------------|----------------|
| Внешний вид                                | Черный порошок |
| Содержание углерода, %                     | 95             |
| Температура начала расширения, °С          | 170            |
| Степень расширения, мл/г                   | 350            |
| Размер частиц в латеральной плоскости, мкм | 180            |

### Обоснование выбора источника углерода

В данной работе в качестве источника углерода для образования каркаса вспененного кокса вспучивающегося покрытия при высоких температурах использовали пентаэритрит микронизированный технический ( $C_5H_{12}O_4$ ) (ТУ 2422-038-00203803-2014) — многоатомный спирт, имеющий четыре гидроксильные группы. В Таблице 2.6 приведены структурная формула [109], а также физико-

химические показатели пентаэритрита микронизированного технического согласно паспорту завода-изготовителя (ПАО «Метафракс», г. Губаха, Россия).

Таблица 2.6 – Физико-химические показатели пентаэритрита микронизированного технического

| Структурная формула                                                                     | Наименование показателя                 | Значение      |
|-----------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| СН <sub>2</sub> -ОН<br>НО-СН <sub>2</sub> -С-СН <sub>2</sub> -ОН<br>СН <sub>2</sub> -ОН | Внешний вид                             | Белый порошок |
|                                                                                         | Массовая доля монопентаэритрита, %      | 98,0          |
|                                                                                         | Температура плавления, °C               | 258,0         |
|                                                                                         | Массовая доля воды и летучих веществ, % | 0,1           |
|                                                                                         | Массовая доля гидроксильных групп, %    | 49,7–50,0     |
|                                                                                         | Водородный показатель, единицы рН       | 5,0-7,0       |

### Обоснование выбора атмосферостойкого пигмента

В качестве атмосферостойкого пигмента был использован диоксид титана пигментный марки TiOx-230 по ТУ 2321-001-17547702-2014 (рутильная форма).

Диоксид титана (TiO<sub>2</sub>) — белый пигмент с поверхностной обработкой соединениями алюминия, кремния и органическим веществом, отличающийся высокой атмосферостойкостью и пигментными свойствам, хорошо разбавляемый в органических растворителях. Технические характеристики диоксида титана пигментного согласно паспорту завода-изготовителя приведены в Таблице 2.7.

Таблица 2.7 – Технические характеристики диоксида титана пигментного

| Наименование показателя                      | Значение |
|----------------------------------------------|----------|
| Массовая доля ТіО2, %                        | 90,0     |
| Массовая доля рутильной формы, %             | 97,0     |
| Массовая доля летучих веществ, %             | 0,5      |
| Массовая доля веществ, растворимых в воде, % | 0,2      |
| Маслоемкость г/100 г пигмента                | 25,0     |
| Укрывистость, г/м <sup>2</sup>               | 35,0     |
| Диспергируемость, мкм                        | 15,0     |

### Обоснование выбора дымоподавляющей и антикоррозионной добавки

В качестве дымоподавляющей и антикоррозионной добавки использовали борат цинка  $2\text{ZnO} \cdot 3\text{B}_2\text{O}_3 \cdot 3,5\text{H}_2\text{O}$  по ТУ  $2146\text{-}001\text{-}61914412\text{-}2010}$  — химическое соединение, которое является высокоэффективным антипиреном и антикоррозионным пигментом. Технические характеристики бората цинка согласно паспорту завода-изготовителя («Кострома Нео Синтез», г. Кострома, Россия) приведены в Таблице 2.8.

Таблица 2.8 – Технические характеристики бората цинка

| Наименование показателя                              | Значение      |
|------------------------------------------------------|---------------|
| Внешний вид                                          | Белый порошок |
| Массовая доля оксида цинка (ZnO), %                  | 36,90         |
| Массовая доля борного ангидрида (В2О3), %            | 47,80         |
| рН водной дисперсии, единицы рН                      | 8,10          |
| Массовая доля воды и летучих веществ, %              | 0,46          |
| Гранулометрический состав: остаток на сите № 0045, % | 0,41          |

В настоящей работе цель введения бората цинка в рецептурный состав огнезащитного покрытия состояла не только в использовании его как эффективного антипирена и антикоррозионной добавки, но и в качестве акцептора атомов хлора для снижения дымообразующей способности покрытия, а также целевой добавки, дополнительно структурирующей вспененный кокс при высоких температурах.

Функция бората цинка, как акцептора атомов хлора, заключается в его способности при нагреве до температуры 280–300 °C разлагаться с выделением кристаллизационной воды, а также оксидов цинка (ZnO) и бора ( $B_2O_3$ ).

### Обоснование выбора растворителя

Для растворения хлоропренового каучука и приготовления полимерного нефтяной раствора качестве растворителя применяли сольвент ПО ГОСТ 10214-78. нефтяной Сольвент представляет собой смесь легких углеводородов, выделяемых из нефтяного или угольного сырья, и приблизительно на 56% состоит из ароматических углеводородов, а остальное содержание составляют непредельные углеводороды.

В Таблице 2.9 приведены основные свойства сольвента нефтяного согласно сертификату завода-изготовителя (ООО «Омега», г. Макеевка, ДНР, Россия).

Таблица 2.9 – Основные свойства сольвента нефтяного

| Наименование показателя                | Значение                                                   |
|----------------------------------------|------------------------------------------------------------|
| Цвет и внешний вид                     | Бесцветная или слабо-желтоватого цвета прозрачная жидкость |
| Плотность при 20 °C, кг/м <sup>3</sup> | 0,86 · 10-3                                                |
| Массовая доля борного ангидрида, %     | 47,8                                                       |
| Летучесть по ксилолу                   | 1,0                                                        |

При выполнении экспериментальных исследований массовая доля растворителя составляла 44,9 % по отношению к массе хлоропренового каучука 3,1 %.

# 2.2. Методы исследований, приборы и экспериментальное оборудование

### Методы определения параметров состояния и эксплуатационных свойств

Линейные размеры экспериментальных образцов измеряли микрометром с точностью 5 мкм. Статическое измерение массы сырьевых материалов и образцов выполняли на весах лабораторных электронных Adventurer<sup>TM</sup> типа AR 2140 (OHAUS, Швейцария), класс точности – II, с точностью 1 мг.

Показатели эксплуатационных свойств определяли в соответствии со стандартными методами, представленными в Таблице 2.10.

### Методы определения огнезащитных свойств

Огнезащитные свойства огнезащитного покрытия на древесине определяли с использованием стандартного метода [111] (Таблица 2.10). Определение теплоизолирующих свойств огнезащитного покрытия и оценку его огнезащитной эффективности выполняли лабораторным методом, сущность которого

заключается в определении времени достижения предельного состояния покрытия на стальной пластине (достижение температуры образца равной 500 °C).

Таблица 2.10 – Методы определения показателей эксплуатационных свойств

| Наименование показателя                                                   | Метод определения |
|---------------------------------------------------------------------------|-------------------|
| Водостойкость                                                             | ГОСТ 4650-2014    |
| Влагостойкость                                                            | ГОСТ 4650-2014    |
| Устойчивость к переменному воздействию температуры и влажности (старению) | ГОСТ Р 53292-2009 |
| Группа огнезащитной эффективности                                         | ГОСТ 16363-98     |
| Коэффициент вспучивания                                                   | ГОСТ Р 59637-2021 |

### Приборы и экспериментальное оборудование

Группу огнезащитной эффективности образцов покрытия определяли на стандартной установке по определению огнезащитной эффективности составов и веществ для древесины и материалов на ее основе «Керамическая труба» (Рисунок 2.1).



Рисунок 2.1 – Внешний вид установки «Керамическая труба»

Для исследования теплоизолирующих и огнезащитных свойств огнезащитного покрытия на стальных пластинах была разработана лабораторная

установка. Основные характеристики лабораторной установки приведены в работе [112], внешний вид установки представлен на Рисунке 2.2.





Рисунок 2.2 – Лабораторная установка для исследования и оценки теплоизолирующих и огнезащитных свойств огнезащитного вспучивающегося покрытия для металлических конструкций

Нагрев установки обеспечивается двумя не связанными между собой нагревательными элементами, управляемыми двумя терморегуляторами. Первый терморегулятор печи управляет открытым нагревательным элементом, другой (контроллер температуры) — встроенным нагревательным элементом печи, который одновременно измеряет и показывает текущую температуру внутренней поверхности испытуемого образца. Держатель образца, представляющий собой плиту, закрепленную на внутренней поверхности дверцы печи, удерживает образец внутри печи в вертикальном положении и обеспечивает термоизоляцию его внутренней поверхности.

Испытания образцов огнезащитного покрытия проводили на стальных пластинах размером  $120 \times 80 \times 2$  мм.

## 2.3. Методика проведения экспериментальных исследований по определению эксплуатационных параметров огнезащитных покрытий

#### Испытания на водостойкость

Испытания образцов огнезащитного покрытия на водостойкость (водопоглощение) определяли весовым методом, сущность которого заключается

в определении массы воды, поглощенной образцом определенных размеров в результате пребывания его в воде в контролируемых условиях — в течение установленного времени при определенной температуре. Подготовку и испытания образцов на водостойкость осуществляли согласно стандартной методике [113]. Критерием оценки водостойкости огнезащитного покрытия служило изменение массы образца.

По результатам определения текущего изменения массы образцов строили диаграмму в координатах «водопоглощение – продолжительность выдерживания». За основной показатель водопоглощения принимали влажность, достигнутую образцом покрытия при выдерживании в воде в течение 5 суток. За указанное время приращение влажности составило менее 5 %.

При отсутствии видимых трещин, признаков отслаивания, или набухания, или вспучивания, иных разрушений и других признаков нарушения целостности покрытия при снижении его огнезащитных свойств не более чем на 20 % от значений, определенных для контрольных образцов, данное покрытие считали выдержавшим испытание на водостойкость.

#### Испытания на влагостойкость

Испытания образцов огнезащитного покрытия на влагостойкость определяли весовым методом, сущность которого состоит в определения массы воды, поглощенной образцом определенных размеров под воздействием влажного воздуха в контролируемых условиях — в течение установленного времени при определенной температуре. Подготовку и испытания образцов на влагостойкость проводили согласно методике, изложенной в стандарте [113]. Как и при оценке на водостойкость, изменение массы образца служило критерием влагостойкости огнезащитного покрытия.

По результатам определения текущего изменения массы образцов строили диаграмму в координатах «влагопоглощение образца покрытия — продолжительность выдерживания».

За основной показатель влагопоглощения принимали влажность, достигнутую образцом покрытия при выдерживании в парах воды в течение 30 суток. За указанное время приращение влажности составило менее 5 %.

При отсутствии видимых признаков нарушения целостности покрытия, в частности, трещин, отслаивания, набухания, вспучивания, и если огнезащитные свойства снижались не более чем на 20% от значений, определенных для контрольных образцов, данное покрытие считали выдержавшим испытание на влагостойкость.

### Испытания на устойчивость к переменному воздействию температуры и влажности

Сущность метода заключается в определении сохранения огнезащитной эффективности огнезащитного покрытия после ускоренного старения в результате комбинированного попеременного воздействия на образцы температуры и влажности в заданной последовательности. Подготовку и испытания образцов проводили в соответствии с методикой, представленной в стандарте [87]. Критерием оценки устойчивости огнезащитного покрытия к переменному воздействию температуры и влажности служило изменение массы образца.

Покрытие считали выдержавшим испытание на устойчивость к переменному воздействию температуры и влажности при сохранении его целостности (отсутствие разрушений, отслаивания, трещин, набухания или вспучивания и др.) и снижении огнезащитных свойств при этом не более чем на 20 % от значений для контрольных образцов.

### Испытания по определению группы огнезащитной эффективности

Метод определения группы огнезащитной эффективности основан на принципе определения горючести твердых веществ по потере массы  $\Delta m$  исходного образца, подвергнутого воздействию открытого пламени газовой горелки, что позволяет оценить его пожарную опасность. Подготовку и испытания образцов проводили в соответствии с методикой, установленной документом [111]. В качестве критерия оценки огнезащитной эффективности покрытия расценивали потерю массы образца. При потере массы менее 9 % образцу с покрытием присваивали

первую (высшую) группу огнезащитной эффективности. Убыль массы образца более 9 % считали отрицательным результатом.

### Испытания по определению коэффициента вспучивания

Вычисление коэффициента вспучивания проводили согласно методике, установленной стандартом [114], сущность которой заключалась в оценке соотношения толщины слоя огнезащитного материала, нанесенного на стальную пластину, до и после воздействия температуры 600 °С. Покрытие считали вспучивающимся, если среднеарифметическое значение коэффициента вспучивания для образцов составляло не менее 10 единиц.

### Испытания по определению теплоизолирующих свойств

Определение теплоизолирующих свойств огнезащитного покрытия и оценку его огнезащитной эффективности выполняли лабораторным методом на установке для исследования и оценки теплоизолирующих и огнезащитных свойств огнезащитного вспучивающегося покрытия для металлических конструкций (см. Рисунок 2.2).

Сущность метода заключается в определении изменения температуры на необогреваемой поверхности опытного образца с покрытием с течением времени до момента достижения образцом предельного состояния — критической температуры для стали. Критерием оценки теплоизолирующих свойств и огнезащитной эффективности огнезащитного покрытия на стальных пластинах считали время достижения образцом критической температуры для стали 500 °C.

### Определение параметров коксового остатка

Покрытия вспучивающегося типа, при всем многообразии огнезащитных средств и различии физико-химических процессов, сопровождающих создание защитного слоя, имеют общий механизм образования внешнего изоляционного слоя за счет увеличения толщины (объема) покрытия при нагреве.

Поэтому в данной работе параметры покрытия исследованы по критериям, характеризующим процесс вспучивания и, главным образом, влияющим на огнезащитную эффективность покрытия.

В качестве таких количественных критериев рассмотрены следующие: изменение кратности вспучивания и массы образцов покрытия, а также плотность и пористость вспененного кокса после изотермического нагрева образцов.

Изменение кратности вспучивания  $\delta$  и массы  $\overline{m}$  покрытия в процессе нагрева образцов до 670 °C рассчитывали по формулам (2.1) и (2.2)

$$\delta = 1 + \frac{h - h_0}{h_0},\tag{2.1}$$

где h – высота слоя покрытия после нагрева, м;

 $h_0$  – первоначальная высота (толщина) слоя покрытия, м.

$$\overline{m} = m/m_0, \tag{2.2}$$

где m – масса покрытия после нагрева, кг;

 $m_0$  — первоначальная масса покрытия, кг.

Расчет плотности  $\rho$  (кг/м³), и пористости  $\varphi$  вспененного кокса проводили по формулам (2.3) и (2.4)

$$\rho = \frac{\rho_{0-\overline{m}}}{1+\delta},\tag{2.3}$$

где  $\rho_0$  – начальная плотность образца, кг/м<sup>3</sup>.

$$\varphi = 1 - \frac{\overline{m}}{1+\delta}.\tag{2.4}$$

При определении пористости по формуле (2.4) полагали, что пористость вспененного кокса обусловлена только изменением потери массы и кратности вспучивания материала огнезащитного покрытия.

### 2.4. Анализ и обработка экспериментальных данных

В работе использовали методы математического планирования и обработки экспериментальных данных в соответствии с положениями регрессионного анализа

и планирования активного эксперимента, в частности, метода симплекс-решетчатого планирования эксперимента.

Однофакторное планирование осуществляли при проведении предварительных экспериментов, целью которых было уточнение выбранных на основе априорной информации диапазонов варьирования исследуемых факторов и построение вспомогательных зависимостей, необходимых при проведении экспериментов. Обработку результатов однофакторных экспериментов выполняли методом корреляции с использованием персонального компьютера путем получения уравнений регрессий и графиков функции.

Для получения уравнений регрессии, адекватно описывающих влияние исследуемых факторов на результативный признак, применяли полный факторный эксперимент.

При осуществлении плана полного многофакторного эксперимента исследуемые факторы варьировали на двух уровнях: верхнем  $z_i^+$  и нижнем  $z_i^-$ . Основной уровень (центр эксперимента) для i-того фактора  $z_i^0$  выражали формулой (2.5)

$$z_i^0 = \frac{z_i^+ + z_i^-}{2} \tag{2.5}$$

Интервалы варьирования факторов  $\lambda$  определяли по формуле (2.6)

$$\lambda = z_i^+ - z_i^0 = z_i^0 - z_i^-. \tag{2.6}$$

Значение варьируемых факторов в матрицу плана вносили в кодированных величинах:

- верхний уровень (+1),
- нижний уровень (-1),
- основной уровень (0).

Проверку однородности дисперсий воспроизводимости проводили по критерию Кохрена (*С*-критерию), оценку значимости коэффициентов модели – по

критерию Стьюдента (*t*-критерию). Исследование адекватности регрессионных моделей выполняли по критерию Фишера (*F*-критерию).

Оптимизацию результатов многофакторного эксперимента проводили графическим методом путем построения поверхности отклика выходного параметра при фиксированных значениях исследуемых факторов в натуральных величинах и устанавливали его оптимум, для чего использовали компьютерные программы «Excel 2010» и «STATISTIKA 10.0».

Моделирование основных процессов проводили в соответствии с набором факторов, наиболее сильно влияющих на тот или иной процесс. При этом в качестве входных параметров выделяли те, которые определяют состояние системы.

Выбранные факторы и параметры отвечали всем требованиям проводимого эксперимента, были управляемыми и численно определяемыми с достаточной для практического применения точностью.

Расчет общего числа наблюдений n, необходимого для получения достоверного результата эксперимента, проводили по формуле (2.7)

$$n = \frac{t^2 \cdot \sigma^2}{(t \cdot m)^2},\tag{2.7}$$

где t – критерий достоверности (доверительный коэффициент);

 $\sigma$  – среднеквадратическое отклонение;

m – ошибка репрезентативности.

Среднеквадратическое отклонение  $\sigma$  при  $n \le 30$  рассчитывали по формуле (2.8)

$$\sigma = \sqrt{\frac{d^2 \cdot p}{n-1}},\tag{2.8}$$

где d — отклонение каждой варианты от среднеарифметической величины вариационного ряда;

p — число повторений (частота) варианты в вариационном ряду.

Если 95 % всех вариант V — отдельного числового выражения изучаемого признака, находились в интервале согласно формуле (2.9)

$$\frac{\Sigma V}{n} \pm 2\sigma,\tag{2.9}$$

то делали вывод о том, что средняя величина размера изучаемого признака является характерной для данного вариационного ряда и не требуется увеличивать число наблюдений в совокупности.

#### 2.5. Выводы к Главе 2

- 1. Разработка рецептуры состава для получения эффективного огнезащитного покрытия вспучивающегося типа для деревянных и металлических конструкций возможна при условии уменьшения количества или исключения растворимых в воде компонентов.
- 2. При высокотемпературном тепловом воздействии в огнезащитных покрытиях происходят фазовые переходы, связанные с поглощением тепла и выделением газообразных продуктов, образующих пористую структуру с повышенной теплоизолирующей способностью или образующих химические соединения, препятствующие процессу воспламенения и горения.
- 3. Процесс вспучивания огнезащитного покрытия должен проходить в температурном интервале 100–450 °C в зависимости от критической температуры защищаемого материала (древесина, сталь). При обычной температуре огнезащитное покрытие должно сохранять свои функции отделочного слоя с требуемой долговечностью.
- 4. Решение задачи улучшения эксплуатационных параметров огнезащитных покрытий базируется на теоретических положениях физико-химических процессов термолиза, процессов поверхностных явлений и заключается в создании термодинамически устойчивого водонерастворимого слоя, совместимого со вспучивающими добавками и пленкообразующим веществом защитного слоя покрытия.

#### ГЛАВА 3.

# ОБОСНОВАНИЕ КОНЦЕПЦИИ СОВЕРШЕНСТВОВАНИЯ ПАРАМЕТРОВ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ ВСПУЧИВАЮЩЕГОСЯ ТИПА ДЛЯ ДЕРЕВЯННЫХ И МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

# 3.1. Теоретическая база концепции совершенствования параметров огнезащитных покрытий

# Процессы термического разложения ингредиентов огнезащитного покрытия вспучивающегося типа

Результаты экспериментальных исследований и обобщение накопленных научно-технических литературных данных позволили рассмотреть процесс создания огнезащитных покрытий вспучивающегося типа по двум ключевым направлениям, основанным на современных представлениях о механизме огнезащитного действия покрытий. Первое направление касается химических процессов в результате термического разложения (термолиза) основных ингредиентов материала огнезащитного покрытия под воздействием высоких температур без катализатора, приводящих К процессам формирования карбонизированного обладающего слоя вспененного кокса покрытия, удовлетворительной адгезией к защищаемому субстрату и устойчивостью к действию турбулентных потоков горячих газов, характерных для условий пожара.

Второе направление затрагивает кинетику и предполагает физические закономерности прохождения фронта превращения через слой огнезащитного покрытия.

К основным механизмам, ответственным за замедление процесса горения материала огнезащитных покрытий, относят:

 механизм образования защитного слоя, который заключается в создании на поверхности горящего материала огнезащитного покрытия непроницаемого слоя за счет свойств антипирена или в создании слоя кокса пористой структуры, изолирующего поверхность материла от нагревания,

- газовая теория, сущность которой состоит в термическом разложении ингредиентов огнезащитного покрытия с интенсивным выделением негорючих газов, изолирующих доступ кислорода воздуха в зону горения,
- барьерный механизм, основанный на снижении скорости нагревания поверхности огнезащитного покрытия в результате затрат тепловой энергии на нагревание твердых частиц дисперсной фазы,
- тепловая теория, основанная на эндотермическом эффекте химических реакций разложения или взаимодействия антипиренов, продуктов их термической деструкции с другими веществами с поглощением тепла.

В качестве примера, на Рисунке 3.1 показаны физические и химические механизмы замедления процесса горения материала покрытий для огнезащиты древесины [115], каждый из которых может протекать как в параллельных, так и в последовательных процессах горения материала огнезащитного покрытия.



Рисунок 3.1 – Механизмы замедления процесса горения материала покрытий для огнезащиты древесины

Процесс огнезащитного действия покрытия вспученного типа можно описать следующим образом. В результате процессов структурирования (за счет синтеза полимерно-олигомерных продуктов) и образования кокса (в процессе горения) формируется изолирующий слой. Далее протекают процессы карбонизации и вспучивания поверхности горящего материала покрытия. Образующийся слой кокса выступает в качестве изолирующего барьера, который замедляет процессы теплопереноса и массопереноса от газовой к конденсированной фазе. Замедление скорости процесса теплопереноса и массопереноса препятствует попаданию газообразных горючих продуктов в пламенную зону, а также ограничивает поступление кислорода воздуха к защищаемому слою. В результате различных фазовых превращений в огнезащитном покрытии при термической деструкции происходит поглощение части подводимой тепловой энергии. Выделяющиеся газообразные продукты охлаждают нагретые слои огнезащитного покрытия за счет процессов диффузии, дополнительно поглощая некоторое количество тепловой энергии, величина которой существенно зависит от компонентного состава и количества газообразных продуктов, образующихся при термической деструкции. Летучие газообразные продукты со значительным количеством атомов водорода в составе молекул, имеют наибольшую теплопоглощающую способность.

Механизм огнезащитного действия вспучивающегося огнезащитного покрытия заключается в значительном ограничении образования газообразных горючих продуктов, в замедлении распространения тепла, что приводит к самозатуханию горящего объекта защиты в стандартных условиях пожара, и соответствует перечисленным ранее механизмам замедления горения.

Таким образом, образование вспучивающегося защитного слоя с низкой теплопроводностью является одним из продуктивных направлений огнезащиты, позволяющих увеличить до нескольких минут промежуток времени от начала воздействия теплового потока до воспламенения.

Современные вспучивающиеся огнезащитные покрытия представляют собой дисперсию термореактивных, антипиреновых наполнителей в среде полимерного связующего, растворителей и смешанных в них различных функциональных

добавок, повышающих физико-механические свойства отвержденного покрытия и стабильность системы при хранении.

Эффективность вспучивающихся огнезащитных покрытий может регулироваться толщиной сухого слоя — чем она больше, тем толще и эффективнее вспененный коксовый слой. Повышения огнезащитной эффективности возможно достичь также за счет применения покрытий, компоненты которых подобраны так, чтобы структура и объем образованного вспененного кокса обеспечивали заявленную огнезащитную эффективность при меньшем расходе на квадратный метр в сравнении с аналогами.

Образование вспененного кокса при нагреве огнезащитных покрытий, включающих полимерное связующее, представляет собой сложный химический процесс, сопровождающийся протеканием ряда окислительно-восстановительных реакций.

В температурном интервале порядка 200–300 °C происходит одновременное образование трехмерных полимерно-олигомерных термостойких смол, выделение негорючих газов и паров воды, вспучивающих смолу с образованием ячеистой структуры вспененного кокса, а сам вспененный кокс за счет явления хемосорбции закрепляется на защищаемой поверхности.

Существуют три основных компонента, необходимых и достаточных для протекания упомянутых выше реакций — это пентаэритрит, меламин и полифосфат аммония. Обычно в состав огнезащитного покрытия их добавляют в соотношениях относительно друг друга — одна часть пентаэритрита, одна часть меламина на 2,5—3 части полифосфата аммония. Общее процентное содержание пентаэритрита, меламина и полифосфата аммония в составе огнезащитного покрытия может варьировать в пределах 30–50 % от общей массы компонентов покрытия.

Пентаэритрит при нормальных температурах не обладает реакционной способностью, а при температуре порядка 200 °C разлагается на альдегиды и воду (Рисунок 3.2) [111].

Рисунок 3.2 – Реакция разложения пентаэритрита при температуре 200 °C

В результате взаимодействия альдегидов с меламином (второй компонент системы) образуются меламин-формальдегидные и меламин-ацетальдегидные смолы [116] (Рисунок 3.3)

Рисунок 3.3 – Химическая реакция взаимодействия альдегидов с меламином

При взаимодействии альдегидов с меламином одна из аминогрупп меламина образует с протоном полифосфата аммония меламин-аммонийный катион, который при температуре выше 300 °C отщепляет аммиак и кислотными группами зацепляется за подложку, обеспечивая химическое сцепление кокса с защищаемой поверхностью [116] (Рисунок 3.4).

Рисунок 3.4 — Реакция образования меламин-аммонийного катиона с протоном полифосфата аммония

Для увеличения кратности вспучивания в систему могут вводиться каталитические добавки, самыми распространенными из которых являются различные углеродные каркасные структуры, графиты, углеродная сажа и др. С добавлением небольшого количества таких добавок в систему огнезащитная эффективность вспучивающихся покрытий существенно повышается.

В углеродосодержащих структурах чередуются простые и двойные связи с лабильно встроенными электронами в  $sp^2$  и  $sp^3$  гибридные формы углеродных атомов. Свойством доступности для контакта с агентами реакций вспучивания встроенных электронов, а также их содействием протеканию окислительновосстановительных реакций обусловлено каталитическое действие углеродосодержащих структур.

В этих основных положениях заключается суть каталитического действия углеродных циклических структур на повышение огнезащитных свойств покрытий вспучивающегося типа.

Естественно, все указанные компоненты должны в виде гомогенной смеси закрепляться на защищаемой подложке и не должны уноситься водой, влагой при наложении определенных факторов внешнего воздействия в результате переменных колебаний температуры и влажности воздуха.

# Механизмы физических изменений в огнезащитных покрытиях вспучивающегося типа

Механизмы физических изменений в огнезащитных покрытиях вспучивающегося типа изучены и представлены в довольно обширных исследованиях применительно к одному из наиболее распространенных составов среди органических или неорганических систем, обладающих способностью огнезащиты за счет создания вспененного слоя, сопровождающегося значительным уменьшением теплопередачи.

В исходном состоянии огнезащитные покрытия представляют собой твердые гетерогенные, гетерофазные зернистые системы, состоящие из случайно расположенных частиц размерами 1–40 мкм и большого количества пор.

При постепенном всестороннем нагреве покрытия до температуры 800 °C имеет место последовательность процессов и состояний, которую удобно рассмотреть на фоне изменения одного из характерных параметров состояния (обозначены курсивом) системы – вязкости (Рисунок 3.5) [116]:

- процесс плавления, сопровождающийся термическим уменьшением
   вязкости материала покрытия (участок AB), расплав;
- процесс растворения компонентов, выделяющихся при разложении и дегидратации, в расплаве с поглощением тепла и уменьшением вязкости (участок BC), раствор парогазовых компонентов ( $NH_3$ ,  $CO_2$ ,  $H_2O$ ) в расплаве;
- процесс образования устойчиво растущих зародышей новой, стабильной фазы пара и газа в расплаве при насыщении с поглощением тепла и уменьшением вязкости (участок CD), дисперсия зародышей пузырьков в расплаве;
- процесс конденсационно-коалесцентного роста пены с поглощением тепла и ростом вязкости (участок DE), *пена*;
- процесс образования геля, сопровождающийся резким ростом вязкости (участок EF), *пенный гель (пенококс)*;
  - синерезис пены, озоленный пенококс.

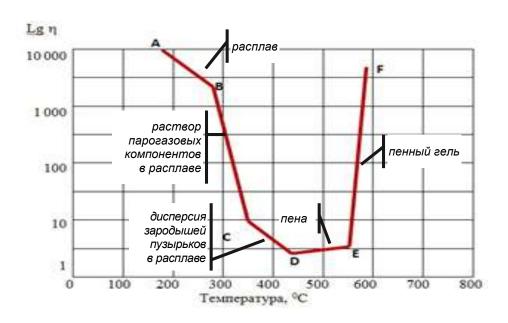



Рисунок 3.5 – Схема изменения вязкости огнезащитного покрытия на основе смеси полифосфат аммония – пентаэритрит при нагревании

Перечисленные выше физические превращения, которые перетерпевает вспененный кокс в процессе формирования, должны последовательно протекать в общем температурном интервале, причем, температурно-временные отрезки должны принадлежать одной непрерывной последовательности стадий.

Принципиальное значение для формирования вспененного кокса имеют минеральные наполнители, их природа, количество в единице объема и дисперсность. Для получения однородной пены важна однородность распределения минеральных наполнителей и основного газообразующего агента в объеме. Устойчивый рост пены возможен только при оптимальной концентрации газообразующего агента. При малой концентрации процесс вспенивания не будет реализован полностью, а при избыточном газообразовании, если поверхностные вспененные слои уже перешли в твердое состояние, возможно механическое разрушение поверхностных слоев с последующим распространением разрушения вглубь вспененного кокса, что может привести к полной потере огнезащитных свойств покрытия.

### Макрокинетика физических процессов

Многолетние экспериментальные и теоретические исследования в области макрокинетики физико-химических процессов огнезащиты позволили разработать физические и математические модели работы тепло- и огнезащиты различных типов в широком диапазоне условий воздействия на них со стороны высокотемпературных газовых сред [117; 118].

Разработанные модели учитывают совокупность физико-химических явлений, а именно:

- поглощение теплоты при пиролизе органических и дегидратации неорганических компонентов;
- фильтрацию в проницаемой пористой среде газо- (паро)образных продуктов пиролиза или дегидратации;
  - конденсацию влаги и испарение «вторичного» конденсата;
  - деформирование (вспучивание или усадку) прогретого слоя;
  - химический и механический унос массы обугленного слоя.

В работах [117; 118] рассмотрены особенности и этапы численной реализации математических моделей тепломассообмена в тепло- и огнезащите при учете термического разложения, испарения-конденсация, уноса массы и вспучивания-усадки.

При разработке методик и программ расчетов достигалось оптимальное сочетание степени детализации физико-математических моделей, возможностей вычислительной техники и точности вычислений. Апробирование методик и программ показало их высокую эффективность практически для всех видов применяемых материалов и конструкций, а также возможность использования разработанных расчетных методик в инженерной практике.

Поведение фазы вспенивания было предложено авторами работ [119–121] описать в рамках подхода, основанного на задачах типа Стефана, в которых моделируются процессы теплопереноса и массопереноса с фазовыми переходами. Однако рассматриваемая проблема с наличием химических превращений, макрокинетическими и термодинамическими константами значительно шире задач Стефана, описывающих только физические превращения.

В рамках подхода с зонами термической деструкции, вспучивания и с учетом динамики изменения толщины вспученного слоя, в том числе его уменьшения, стоит упомянуть методику авторов [122].

## Моделирование огне- и теплозащитных параметров огнезащитных покрытий вспучивающегося типа

Понимание основных физических механизмов, обеспечиваемых моделированием, служит руководством в выборе компонентов, которые могут усиливать или подавлять определенные эффекты. Как правило, процесс теплозащиты включает две основные стадии — вспучивание покрытия и дальнейший теплоперенос в образующемся при вспучивании пористом материале.

Теоретические части исследований [119] посвящены, как правило, отдельным этапам теплозащиты. В связи со сложностью задачи, аналитические результаты охватывают отдельные аспекты проблемы и их количество

незначительно. Все более широкие теоретические исследования проводят при помощи численного решения соответствующих математических моделей [123].

Предложена математическая модель [124] нагрева вспучивающегося огнезащитного покрытия, базирующаяся на фундаментальных законах сохранения массы и энергии вещества, основой подхода в которой является взгляд на покрытие, как на смесь, состоящую из исходных веществ и продуктов их преобразований, среди которых есть газ, рост объема которого при нагревании является причиной вспучивания.

Упрощающим обстоятельством является предположение о том, что при вспучивании каркас покрытия ведет себя подобно жидкости. Предложенный подход позволяет в рамках единой модели описать вызванные нагреванием от внешнего теплового потока процессы теплопереноса, термического разложения, испарения, вспучивания и уноса массы материала покрытия.

Известна [125] математическая модель описания процессов теплопереноса и массопереноса в огнезащитных вспучивающихся покрытиях с применением интегральных критериев — потери массы и кратности расширения (вспучивания) материала покрытия. Авторами [126] проведено моделирование огне- и теплозащитных параметров теплофизических свойств покрытий с учетом физико-химических превращений в условиях пиролиза, вспучивания и порообразования. Исходным условием модели является баланс энергии на фронте коксования.

В этой модели огнезащитное покрытие состоит из вспучивающегося кокса и разложившегося (деструктирующегося) эластичного материала. В условиях вспучивания рабочая поверхность покрытия двигается в сторону источника, выделяющего тепло, а граница пиролиза (коксования) – вглубь материала покрытия.

Можно предположить, что градиент температур определяется только двумя параметрами – толщиной и временем, то есть реализуется автомодельный режим прогрева материала огнезащитного покрытия. Для моделирования процессов нагрева использованы параметры – начальная и допустимая температура на

необогреваемой стенке покрытия, температура пиролиза и порообразования в коксовом слое.

К другим параметрам модели относят — тепловой эффект пиролиза и деформация вспучивания; коэффициент деструкции; параметр прогрева, связанный с температуропроводностью, деформацией вспучивания и тепловым эффектом пиролиза; толщина деструктированного и прогретого слоя; время воздействия; толщина покрытия, необходимая для прогрева; скорость горения; параметр эффективности, учитывающий плотность и скорость деструкции материала.

На эксплуатационные параметры огнезащитного покрытия наиболее существенно влияют процессы вспучивания и образования кокса, а также количество удерживаемой воды. Сохранение 20 % воды в составе огнезащитного покрытия позволяет увеличить суммарный эндотермический эффект более, чем на 30 %. Меняя тепловой эффект процесса пиролиза, можно изменять толщину огнезащитного покрытия, необходимую для прогрева материала. Таким образом, тепловой эффект пиролиза можно увеличить более в 1,3 раза за счет увеличения содержания воды.

По мнению авторов [122] значимость влияния изменения тех или иных огнезащитных вспучивающихся покрытий параметров на огнезащитную эффективность должна оцениваться либо экспериментально (что в большинстве случаев нереально), либо с помощью математического моделирования при наличии апробированной методики и компьютерной программы расчетов. Поскольку только огневые испытания, учитывая возможные отклонения в режимах воздействия, могут Этот факт неоднозначные результаты. является дополнительным подтверждением того, что не только результаты измерений температуры испытываемых конструкций, но и режимы огневого воздействия должны быть доступны для анализа.

Была научно обоснована возможность методики теплотехнических расчетов прогрева конструкций и изделий, защищаемых вспучивающимися покрытиями при различных режимах пожаров [122] и показано, что математическое моделирование

в сочетании с огневыми экспериментами является эффективным инструментом для обеспечения оптимальной огнезащиты и требуемой огнестойкости конструкций. Авторами [122] с помощью такого моделирования установлено и показано, что главными факторами, влияющими на огнезащитную эффективность вспучивающихся огнезащитных покрытий и, соответственно, на огнестойкость защищаемых ими элементов, являются параметры вспучивания и стабильность вспученного слоя при огневом воздействии. Поэтому именно оценке их изменения при старении следует уделять основное внимание.

Моделирование позволяет снизить до разумного минимума количество дорогостоящих огневых испытаний. При этом повышается достоверность прогнозирования огнезащитной эффективности и определения оптимальных толщин вспучивающихся покрытий.

Реализация подобного подхода имеет важное практическое значение, в частности, для обеспечения огнезащиты и огнестойкости конструкций, учитывая их конструктивные особенности, сложность, а также высокую стоимость подготовки и проведения огневых испытаний.

# 3.2. Научное обоснование классификации параметров огнезащитных покрытий

Научное обоснование классификации параметров огнезащитных покрытий основывалось на дифференцированном подходе к выделению показателей каждого из параметров и контролирующих их критериев в отдельные группы с учетом факторов, главным образом влияющих на изменение огнезащитных свойств в различных условиях эксплуатации покрытий.

Как показали результаты аналитического исследования, к основным влияющим факторам, определяющим изменение огнезащитных свойств покрытий вспучивающего типа, можно отнести механические, физические, химические, технологические, эксплуатационные и воздействие открытого пламени (Таблица 3.1).

Таблица 3.1 – Основные параметры огнезащитных покрытий вспучивающего типа

| Влияющий     | Параметр         | Характеристика             | Показатель              | Критерий оценки параметра                           |
|--------------|------------------|----------------------------|-------------------------|-----------------------------------------------------|
| фактор       | Параметр         | метода                     | параметра               |                                                     |
|              |                  | Визуальный метод           | Предел прочности        | Глубина выдавливания металлической пластинки с      |
|              |                  | (ГОСТ 29309-92)            | при растяжении          | покрытием в момент его разрушения при вдавливании   |
|              |                  |                            |                         | сферического пуансона                               |
|              |                  | Визуальный метод           | Прочность при ударе     | Максимальная высота, при падении с которой груз     |
|              | Прочность        | (FOCT 4765-73)             |                         | определенной массой не наносит механических         |
| $\leq$       |                  |                            |                         | повреждений покрытию испытуемого образца            |
| Механический |                  | Эмпирический метод         | Предел прочности        | Степень растрескивания и (или) отслаивания покрытия |
| NHI          |                  | (ГОСТ 31974-2012)          | при изгибе              | от окрашиваемой поверхности на стержне данного      |
| Hec          |                  |                            |                         | диаметра                                            |
| KH           |                  | Количественный метод       | Твердость               | Отношение числа колебаний маятника на испытуемом    |
| Z.           | Твердость        | с применением              |                         | образце покрытия к числу колебаний маятника         |
|              | твердоств        | маятникового прибора типа  |                         | на контрольной пластинке                            |
|              |                  | ТМЛ (ГОСТ 5233-2021)       |                         |                                                     |
|              |                  | Визуальный метод           | Эластичность пленки при | Минимальный диаметр стержня при изгибании образца   |
|              | Эластичность     | (ГОСТ 6806-73)             | изгибе                  | покрытия, на котором испытуемая пленка осталась     |
|              |                  | (CT CЭB 2546-80)           |                         | неповрежденной                                      |
|              |                  | Количественный метод       | Условная вязкость       | Время непрерывного истечения определенного объема   |
|              | Вязкость         | (ΓOCT 8420-74)             |                         | испытуемого материала через калиброванное сопло     |
|              |                  |                            |                         | вискозиметра типа ВЗ-246                            |
| $\Phi_{V}$   |                  | Пикнометрический метод     | Плотность жидкого       | Масса материала в объеме испытуемого материала      |
| <br> -       | Плотность        | (п. 2.5.2 ГОСТ Р 50535-93) | материала               |                                                     |
| Физический   |                  | Количественный метод       | Плотность твердого      | Масса пленки в объеме испытуемой жидкости           |
| KH           |                  | (п. 1.5.4 ГОСТ Р 50535-93) | покрытия                |                                                     |
| Z,           |                  | Количественный метод       | Коэффициент             | Количество тепла, проходящее в единицу времени      |
|              | Теплопроводность | (ГОСТ 7076-99)             | теплопроводности        | через единицу поверхности теплообмена при падении   |
|              |                  |                            |                         | температуры на 1 градус на единицу длины нормали    |
|              |                  |                            |                         | к изотермической поверхности                        |

Продолжение Таблицы 3.1

|                  | е таолицы 3.1                                     |                                          |                                                                                         |                                                                                                             |
|------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Влияющий         | Параметр                                          | Характеристика                           | Показатель                                                                              | Критерий оценки параметра                                                                                   |
| фактор           | 110pm:101p                                        | метода                                   | параметра                                                                               | 1 1 1                                                                                                       |
| Химический       | Стойкость к действию химической агрессивной среды | Количественный метод (ГОСТ 12020-2018)   | Количество поглощенной испытательной жидкости (в соответствии с условиями эксплуатации) | Изменение массы, линейных размеров, внешнего вида и огнезащитных свойств покрытия                           |
| Технологический  |                                                   | Метод отрыва покрытий (ГОСТ 32299-2013)  | Усилие отрыва, необходимое для разрушения адгезии или когезии                           | Сила отрыва                                                                                                 |
| огиче            | Укрывистость                                      | Количественный метод<br>(ГОСТ 8784-75)   | Укрывистость высушенной<br>пленки                                                       | Визуальная оценка состояния покрытия. Масса пленки                                                          |
| еский            | Скорость и степень высыхания пленки отверждения   | Визуальный метод<br>(ГОСТ 19007-73)      | Скорость и степень высыхания пленки                                                     | Время, высота пленки, липкость                                                                              |
|                  | Когезия вспененного кокса                         | Лабораторный метод                       | Сохранность коксового остатка                                                           | Изменение массы кокса                                                                                       |
|                  | Ропопорпоннания                                   | Количественный метод (ГОСТ 4650-2014)    | Массовая доля воды, поглощенной образцом                                                | Изменение массы и огнезащитных свойств покрытия                                                             |
| Эксп             | Клагопоглониение                                  | Количественный метод<br>(ГОСТ 4650-2014) | Массовая доля воды при насыщении образца                                                | Изменение массы и огнезащитных свойств покрытия                                                             |
| луатаг           |                                                   | Количественный метод (ГОСТ Р 53292-2009) | Группа огнезащитной<br>эффективности                                                    | Изменение массы и огнезащитных свойств покрытия                                                             |
| Эксплуатационный |                                                   | Количественный метод (ГОСТ 9.401-2018)   | Оценка климатической стойкости покрытия                                                 | Изменение массы и огнезащитных свойств покрытия. Визуальная оценка состояния покрытия, ширина зоны коррозии |
|                  | Коррозионная                                      | Количественный метод (ГОСТ 9.401-2018)   | Адгезия покрытия                                                                        | Визуальная оценка состояния покрытия, ширина зоны коррозии                                                  |
|                  | Вспушивание                                       | Количественный метод (ГОСТ Р 59637-2021) | Коэффициент вспучивания                                                                 | Кратность вспученного слоя покрытия                                                                         |

### Продолжение Таблицы 3.1

| Влияющий фактор | Параметр                      | Характеристика<br>метода                                              | Показатель<br>параметра               | Критерий оценки параметра                                                                            |
|-----------------|-------------------------------|-----------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|
| Эксплу          |                               | 1. Для древесины:<br>Количественный метод<br>(ГОСТ Р 53292-2009)      | 1. Группа огнезащитной эффективности. | 1. Потеря массы покрытия                                                                             |
|                 | Огнезащитная эффективность    | 2. Для стальных конструкций: Количественный метод (ГОСТ Р 53295-2009) | 2. Предел огнестойкости.              | 2. Время от начала теплового воздействия на опытный образец до наступления его предельного состояния |
| Bos<br>on       | Горючесть                     | Количественный метод (п. 4.3 ГОСТ 12.1.044)                           | Группа горючести                      | Потеря массы покрытия, приращение температуры                                                        |
| Z 0: \(\infty\) | Дымообразующая способность    | Количественный метод<br>(п. 4.18 ГОСТ 12.1.044-89)                    | Коэффициент<br>дымообразования        | Длина пути луча света, масса испытуемого образца, светопропускание                                   |
| вие<br>го<br>и  | Токсичность продуктов горения | Биологический метод<br>(п. 4.20 ГОСТ 12.1.044-89)                     | Показатель токсичности                | Концентрация токсичных продуктов горения и термодеструкции                                           |

Сравнительный анализ данных (Таблица 3.1) позволил выделить наиболее значимые количественные критерии – высоту (длину), изменение массы, время, а также качественные критерии – визуальную оценку состояния покрытия, степень растрескивания, отслаивания покрытия от поверхности и для наглядности построить диаграмму (Рисунок 3.6), показывающую относительное распределение критериев при оценке параметров, связанных с механическим, физическим, химическим, технологическим, эксплуатационным воздействием и воздействием открытого пламени на огнезащитное покрытие.

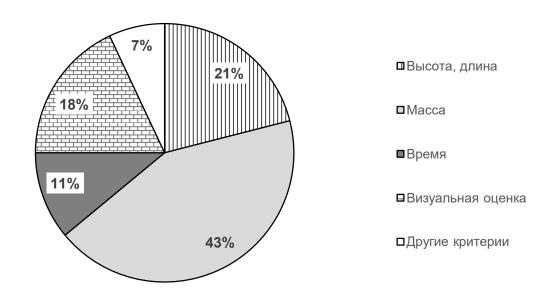



Рисунок 3.6 – Диаграмма распределения критериев количественной оценки параметров огнезащитного покрытия

Как видно из диаграммы (Рисунок 3.6), к наиболее значимому критерию оценки большинства параметров огнезащитных покрытий, можно отнести изменение массы (43 %). Остальные критерии – количество тепла, сила отрыва, светопропускание и концентрация токсичных продуктов горения и термодеструкции охватывают оценку всего лишь 7 % параметров огнезащитных покрытий.

Параметры огнезащитных покрытий, связанные с механическими и физическими факторами воздействия, в основном зависят от состава и структуры материала покрытия. Химические свойства характеризуют химический состав материала покрытия и химическое взаимодействие с другими веществами.

Технологические параметры определяют возможность нанесения огнезащитного покрытия тем или иным методом. Эксплуатационные параметры определяют водостойкость, влагостойкость, устойчивость к переменному воздействию температуры и влажности и др.

Необходимость в оценке параметров огнезащитных покрытий для повышения огнестойкости деревянных и металлических конструкций возникает в процессе их разработки, при производстве, проведении сертификации и определении области их возможного применения (Таблица 3.2).

Таблица 3.2 – Перечень параметров, характеризующих эффективность огнезащитных покрытий для деревянных и металлических конструкций [12]

|                                   | Область применения огнезащитного покрытия |              |                                   |  |  |  |
|-----------------------------------|-------------------------------------------|--------------|-----------------------------------|--|--|--|
| Параметр                          | Разработка<br>и производство              | Сертификация | Определение<br>области применения |  |  |  |
| Группа огнезащитной эффективности | +                                         | +            | _                                 |  |  |  |
| Атмосферостойкость                | +                                         | _            | +                                 |  |  |  |
| Адгезия                           | +                                         | _            | +                                 |  |  |  |
| Твердость покрытия                | +                                         | _            | +                                 |  |  |  |
| Коэффициент вспучивания           | +                                         | _            | _                                 |  |  |  |
| Устойчивость<br>к старению        | +                                         | -            | +                                 |  |  |  |
| Предел огнестойкости конструкции  | +                                         | +            | +                                 |  |  |  |

Область применения различных способов огнезащиты определяют с учетом требуемого предела огнестойкости конструкций, их типа и ориентации в пространстве, вида нагрузки, действующей на конструкции (статическая, динамическая), температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы), степени агрессивности окружающей среды и др.

Следует отметить, что в настоящее время при разработке огнезащитных покрытий чаще всего учитывается только один параметр пожарной опасности – горючесть. Как следствие этого, вся нормативная и экспериментальная базы

Российской Федерации, Республик Беларусь и Казахстан также построены на рассмотрении именно этого параметра.

Таким образом, при создании новых огнезащитных покрытий необходимо применять многофакторный подход с учетом весомости всех влияющих факторов, в зависимости от условий эксплуатации покрытия (статические, динамические).

Для этого влияющие факторы надо формализовать, то есть преобразовать в критерии, являющиеся признаком, на основании которого производится количественная оценка эксплуатационных параметров огнезащитного покрытия.

Обоснование классификации параметров огнезащитных покрытий и отнесение их к группам материалов является важным этапом как для их идентификации, так и для последующих испытаний. В зависимости от присвоенной группы огнезащитных покрытий определяются необходимые параметры физико-химических методов для идентификации, а также параметры контроля и критерии оценки пожарной и токсической безопасности огнезащитного покрытия.

### 3.3. Рецептурные принципы создания огнезащитных покрытий вспучивающегося типа

При выборе исходных компонентов ДЛЯ создания рецептуры вспучивающегося огнезащитного покрытия, отличающегося от известных сочетанием повышенной огнестойкости с водостойкостью, влагостойкостью, а также стойкостью к переменному воздействию температуры и влажности, были рассмотрены два направления исследований. Первое направление – водные достоинства которых очевидны: экологичность, удобство использовании. В то же время, вспучивающиеся огнезащитные покрытия на водной основе в условиях воздействия неблагоприятных климатических факторов со временем склонны к вымыванию водорастворимых компонентов антипиреновой группы и, как следствие, снижению огнезащитных свойств покрытия.

Поэтому в настоящей работе при создании рецептуры вспучивающегося огнезащитного покрытия рассмотрено второе направление исследований — огнезащитные покрытия на полимерной основе, к достоинствам которых можно отнести меньшее время сушки, высокую устойчивость к воде, влажности, а также переменному влиянию температуры и влажности.

Выбор полимерного связующего определялся, прежде всего, требованиями к эксплуатационным и огнезащитным параметрам вспучивающихся покрытий.

Независимо от характера условий эксплуатации, наибольшей химической стойкостью обладают покрытия на основе кристаллических и пространственносшитых аморфных полимеров. Исходя из требований, предъявляемых к структурным особенностям пленкообразующих веществ, для устранения недостатков, с которыми мы столкнулись при разработке огнезащитного покрытия на основе жидкого стекла, принято решение разработать рецептуру огнезащитного покрытия на основе негорючего хлоропренового каучука.

Для интенсивного образования вспененного кокса необходимо, чтобы процессы, происходящие в покрытии при воздействии на них теплового потока, протекали в строго определенной последовательности, и, если учесть, что она зависит в первую очередь от температуры разложения составляющих компонентов покрытия, следующим важным критерием их выбора является температура начала разложения донора кислоты — фосфатов аммония.

В качестве донора кислоты наиболее целесообразно использовать полифосфат аммония, температура разложения которого лежит в области температур эффективного разложения выбранного связующего вещества – хлоропренового каучука (100–200 °C). Основной характеристикой полифосфата аммония для огнезащитного покрытия является содержание азота и фосфора, которое для азота должно находиться в пределах 14–15 %, фосфора – не менее 70 %. Более низкое содержание фосфора не позволит достичь нужной высоты (кратности) пены. Для создания рецептуры вспучивающегося огнезащитного покрытия использовали полифосфат аммония фазы II с высокой степенью полимеризации (> 1000).

Другим важным компонентом вспучивающегося огнезащитного покрытия считается карбонизирующий материал, который в условиях высокотемпературного пиролиза в смеси с катализатором карбонизации образовывает устойчивые конденсированные структуры вспененного кокса. В качестве такого материала для исследований взят пентаэритрит.

Для дополнительного усиления эффективности вспучивания в огнезащитный вспучивающийся материал добавляли вспенивающие агенты (газообразователи). Благодаря выделению большого количества негорючих газов при термическом разложении вспенивающие агенты способствуют образованию вспененного слоя кокса. Свойства наиболее широко применяющихся вспенивающих агентов приведены в Таблице 3.3.

Таблица 3.3 – Свойства наиболее широко применяющихся вспенивающих агентов

| Название соединения           | Растворимость<br>в воде   | Температура разложения, °С | Основной продукт разложения                                                          |  |
|-------------------------------|---------------------------|----------------------------|--------------------------------------------------------------------------------------|--|
| Карбамид                      | растворим                 | 130                        | NH <sub>3</sub> , H <sub>3</sub> PO <sub>4</sub>                                     |  |
| Гуанидин                      | растворим                 | 160                        | NH <sub>3</sub> , H <sub>3</sub> PO <sub>4</sub>                                     |  |
| Бутилкарбамид                 | Бутилкарбамид нерастворим |                            | NH <sub>3</sub> , H <sub>3</sub> PO <sub>4</sub> , H <sub>2</sub> O, CO <sub>2</sub> |  |
| Тиокарбамид                   | малорастворим             | 180                        | NH <sub>3</sub> , H <sub>3</sub> PO <sub>4</sub> , H <sub>2</sub> O, CO <sub>2</sub> |  |
| Хлористый парафин нерастворим |                           | 200                        | H <sub>2</sub> O, CO <sub>2</sub> , HCl                                              |  |
| Дициандиамид                  | нерастворим               | 230                        | NH <sub>3</sub> , H <sub>2</sub> O, CO <sub>2</sub>                                  |  |
| Меламин нерастворим           |                           | 300                        | NH <sub>3</sub> , H <sub>2</sub> O, CO <sub>2</sub>                                  |  |

Согласно литературным данным [123; 124], в качестве вспенивающего агента наиболее целесообразно использовать меламин. Из приведенных химических соединений (Таблица 3.3) выбраны наиболее эффективные, нерастворимые в воде – хлористый парафин и меламин. Необходимо отметить, что хлористый парафин выполняет функцию не только вспенивающего агента, но и карбонизатора, массовая концентрация хлористого парафина в составе огнезащитного покрытия варьируется в пределах 2–8 %.

Аналогичным двойственным эффектом обладает меламин, выступая в роли химического агента-газообразователя и, одновременно, антипирена. В результате

реакции термического разложения меламина образуются молекулы диоксида углерода и аммиака — негорючих химических соединений. Однако при использовании хлористого парафина происходит нежелательное образование дыма, что привело к необходимости включения в состав огнезащитного покрытия бората цинка ( $2ZnO\cdot3B_2O_3\cdot3,5H_2O$ ), который является эффективной и экономичной синергетической добавкой к галогеносодержащим органическим антипиренам в композиционных материалах.

Многофункциональный борат цинка широко пользуется как антипирен и дымоподавитель. Дегидратация бората цинка происходит при температуре 290 °C, при этом в диапазоне температур 290–450 °C высвобождается 14 мас. % воды. По сравнению с гидроксидом алюминия, борат цинка способствует формированию более твердого и прочного коксового остатка. Для создания прочного углеродного каркаса, образующегося при нагреве вспененного кокса, использовали терморасширяющийся графит.

Решить проблему, связанную с достаточно стремительным приростом температуры на необогреваемой стороне образца на стальной пластине до начала момента вспучивания, возможно при смещении температуры начала данного процесса до показаний менее 250 °C, но в комплексе с основным огнезащитным покрытием, имеющим температуры вспучивания в пределах 300–400 °C.

Идейной линией работы является установление возможности разработки и комбинированную применения огнезащитного покрытия, включающего компоненты которой работали вспучивающую добавку, бы разных температурных диапазонах таким образом, чтобы протекающий выгорания и усадки первого вспученного слоя приводил к синхронному вспучиванию покрытия без прерывания процесса нарастания вспученного слоя и фактического прироста температуры необогреваемой значительного на поверхности конструкции. Очевидно, что для реализации данной идеи необходим тщательный подбор компонентного состава вспучивающей добавки.

Рецептуру вспучивающегося огнезащитного покрытия на основе хлоропренового каучука разрабатывали с применением базовой вспучивающей

антипиреновой системы, включающей терморасширяющегося графит, бората цинка и полифосфата аммония.

В Таблице 3.4 приведен рецептурный состав разработанного вспучивающегося огнезащитного покрытия для деревянных и металлических конструкций с указанием соответствующих нормативных документов, устанавливающих требования к химической продукции.

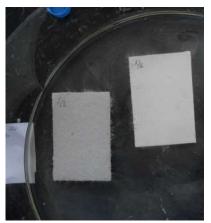
Таблица 3.4 — Рецептурный состав разработанного вспучивающегося огнезащитного покрытия для деревянных и металлических конструкций

| Наименование исходного                                         | Содержание           | Нормативный документ                                                                              |
|----------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|
| компонента, марка (тип, сорт)                                  | в рецептуре, масс. % | на компонент                                                                                      |
| 1. Хлоропреновый каучук, тип CR 2322                           | 3,1                  | Импортный продукт (страна-изготовитель Китай) по Q/SNYF 02.06-2009                                |
| 2. Хлористый парафин XП-66T, марка А                           | 5,2                  | СТО 000203275-212-2008 с изм. 1–4                                                                 |
| 3. Графит окисленный терморасширяющийся, марка EG-400          | 10,4                 | Импортный продукт (страна-изготовитель Китай) CAS № 7782-42-5                                     |
| 4. Меламин                                                     | 7,8                  | Импортный продукт (страна-изготовитель Китай) по GB/T 9567-2016 (китайский национальный стандарт) |
| 5. Пентаэритрит технический микронизированный, высший сорт     | 7,8                  | ТУ 2422-038-00203803-2014<br>с изм. № 1                                                           |
| 6. Полифосфат аммония (кристаллическая фаза II), тип CF-APP201 | 15,6                 | Импортный продукт (страна-изготовитель Китай) CAS № 68333-79-9                                    |
| 7. Диоксид титана пигментный, марка TiOx-230                   | 2,6                  | ТУ 2321-001-17547702-2014                                                                         |
| 8. Борат цинка                                                 | 2,6                  | ТУ 2146-001-61914412-2010                                                                         |
| 9. Сольвент нефтяной                                           | 44,9                 | ГОСТ 10214-78                                                                                     |

Исходя из необходимости нанесения слоя огнезащитного покрытия толщиной не менее 0,5 мм на вертикальные поверхности, при выполнении экспериментальных исследований массовая доля растворителя — сольвента нефтяного — составляла до 88 % по отношению к массе пленкообразующего вещества — хлоропренового каучука.

#### 3.4. Выводы к Главе 3

- 1. Установлено, что водопоглощение, влагопоглощение, устойчивость к переменному воздействию температуры и влажности являются определяющими параметрами, влияющими на показатели эффективности огнезащитных покрытий. Научно обоснован выбор исходных материалов, физико-химические свойства которых способствуют повышению устойчивости огнезащитного покрытия к воздействию внешних факторов.
- 2. Научно обоснована классификация параметров огнезащитных покрытий с учетом критериев количественной оценки факторов, влияющих на огнезащитные и эксплуатационные параметры покрытия с целью последующего формирования их в группы по показателям огнезащитной эффективности.
- 3. Установлено, что наиболее эффективными компонентами для базовой вспучивающей антипиреновой системы являются терморасширяющийся графит, борат цинка и полифосфат аммония. Перечисленные материалы будут исследованы на предмет повышения огнезащитных И эксплуатационных параметров огнестойкости огнезащитного покрытия ДЛЯ повышения деревянных металлических конструкций.
- 4. Разработана рецептура вспучивающегося огнезащитного покрытия на основе хлоропренового каучука с применением базовой вспучивающей антипиреновой системы, включающей терморасширяющийся графит, борат цинка и полифосфат аммония.


### ГЛАВА 4.

# ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ВОЗДЕЙСТВИЮ ВНЕШНИХ ФАКТОРОВ НА ОГНЕЗАЩИТНЫЕ СВОЙСТВА РАЗРАБОТАННОГО ОГНЕЗАЩИТНОГО ПОКРЫТИЯ ВСПУЧИВАЮЩЕГОСЯ ТИПА

## 4.1. Исследование воздействия воды, влажности и устойчивости к переменному воздействию температуры и влажности на огнезащитные свойства покрытия

### Исследование воздействия воды на огнезащитные свойства покрытия

На Рисунке 4.1 представлены фотографии процесса испытаний огнезащитного покрытия на стальных пластинах по воздействию внешних факторов на его устойчивость.



а) вода (5 суток)



б) влажность (30 суток)



в) стойкость к переменному влиянию температуры и влажности (14 суток)

Рисунок 4.1 – Испытания огнезащитного покрытия на стальных пластинах по воздействию внешних факторов на его устойчивость

Для решения поставленных задач экспериментальная часть исследования была разделена на четыре этапа (Рисунок 4.2).

Как показали результаты предварительных исследований, для улучшения свойств, характеризующих пожарную опасность огнезащитных покрытий, наиболее эффективным является введение вспучивающей добавки, содержащей

терморасширяющийся графит (8–38 %), борат цинка (2–10 %) и полифосфат аммония (8–68 %).

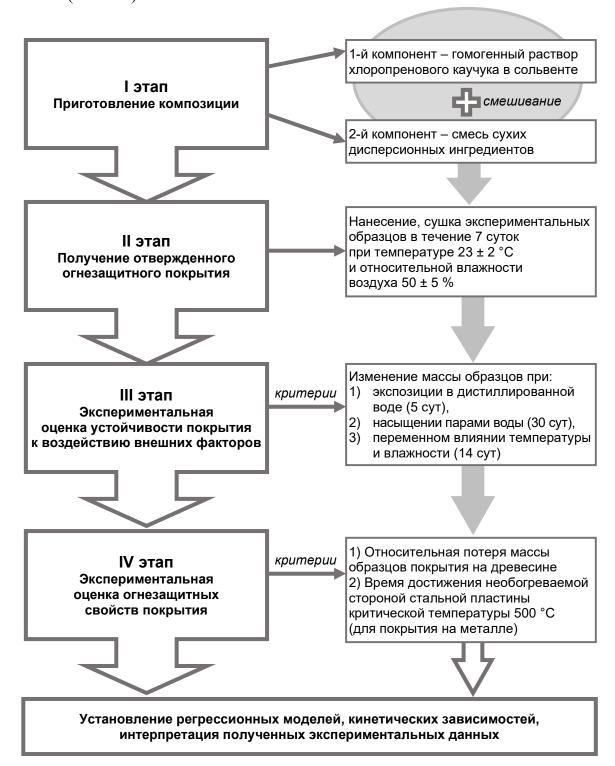



Рисунок 4.2 — Блок-схема алгоритма экспериментального исследования

Вместе с тем, количество компонентов вспучивающей добавки оказывает определяющее влияние на стойкость огнезащитного покрытия к воздействию внешних факторов. По этой причине результаты исследования по влиянию

содержания компонентов вспучивающей добавки на водостойкость, влагостойкость, а также устойчивость к переменному воздействию температуры и влажности огнезащитного покрытия, целесообразно было использовать для поиска наиболее рациональных рецептурных решений.

Для этих целей был применен полный факторный эксперимент, позволяющий построить регрессионную модель, основанную на двухуровневом варьировании факторов с учетом всех возможных взаимодействий факторов. Полный факторный эксперимент применен также для проверки связи между выходным фактором y и независимыми факторами ( $z_1$ ,  $z_2$ ,  $z_3$ ), оказывающими на него влияние и описываемыми количественными показателями.

В качестве экспериментальных факторов или независимых переменных, влияющих на выходной фактор — водостойкость, влагостойкость, стойкость к переменному влиянию температуры и влажности огнезащитного покрытия, выбраны следующие факторы:

 $z_1$  — содержание терморасширяющигося графита;

 $z_2$  – содержание бората цинка;

 $z_3$  – содержание полифосфата аммония.

Число экспериментов n, необходимое для реализации всех возможных сочетаний уровней факторов, определяли по формуле (4.1)

$$n=2^k, (4.1)$$

где k – количество изучаемых факторов,

2 – число уровней.

В общем виде уравнение регрессии, описывающее влияние парных взаимодействий факторов  $z_1, z_2, z_3$  на каждый из исследуемых параметров, имеет следующий вид

$$y = b_0 + b_1 \cdot z_1 + b_2 \cdot z_2 + b_3 \cdot z_3 + b_{12} \cdot z_1 \cdot z_2 + b_{13} \cdot z_1 \cdot z_3 + b_{23} \cdot z_2 \cdot z_3 + b_{123} \cdot z_1 \cdot z_2 \cdot z_3,$$
 (4.2)

где  $b_0$  – свободный член уравнения регрессии;

 $b_1,\ b_2,\ b_3$  — коэффициенты при независимых переменных уравнения регрессии.

Матрица планирования полного факторного эксперимента типа  $2^3$  для описания зависимости водопоглощения W огнезащитного покрытия от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$  представлена в Таблице 4.1.

Таблица 4.1 — Матрица плана эксперимента по описанию зависимости водопоглощения W огнезащитного покрытия от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$ 

| нта   | Экспериментальный фактор (безразмерное кодовое выражение) |       | Выходной фактор — результат эксперимента (водопоглощение) $W_i$ , % |       |       | чения | ная<br>1л                                            | ия                           |                                           |
|-------|-----------------------------------------------------------|-------|---------------------------------------------------------------------|-------|-------|-------|------------------------------------------------------|------------------------------|-------------------------------------------|
| Номер | $z_1$                                                     | $z_2$ | <i>Z</i> <sub>3</sub>                                               | $W_1$ | $W_2$ | $W_3$ | Среднее значение водопоглощения $\overline{W_j}$ , % | Выборочная дисперсия $S_j^2$ | Дисперсия<br>воспроизводимости<br>$S_0^2$ |
| 1     | +1                                                        | +1    | +1                                                                  | 3,70  | 4,20  | 3,20  | 3,70                                                 | 0,25                         |                                           |
| 2     | -1                                                        | +1    | +1                                                                  | 4,30  | 3,50  | 3,90  | 3,90                                                 | 0,16                         |                                           |
| 3     | +1                                                        | -1    | +1                                                                  | 6,15  | 4,50  | 4,65  | 5,10                                                 | 0,83                         |                                           |
| 4     | -1                                                        | -1    | +1                                                                  | 2,90  | 2,90  | 2,85  | 2,88                                                 | 0,00085                      | 0,57                                      |
| 5     | +1                                                        | +1    | -1                                                                  | 3,40  | 8,50  | 7,60  | 8,50                                                 | 0,81                         | 0,37                                      |
| 6     | -1                                                        | +1    | -1                                                                  | 4,20  | 4,20  | 3,00  | 3,80                                                 | 0,48                         |                                           |
| 7     | +1                                                        | -1    | -1                                                                  | 5,90  | 3,50  | 4,70  | 4,70                                                 | 1,44                         |                                           |
| 8     | -1                                                        | -1    | -1                                                                  | 5,25  | 3,90  | 4,05  | 4,40                                                 | 0,55                         |                                           |

На основании экспериментальных данных рассчитаны коэффициенты уравнения регрессии (4.2) по формулам (4.3)

$$b_{0} = \frac{1}{n} \sum_{j=1}^{n} \overline{W_{j}},$$

$$b_{i} = \frac{1}{n} \sum_{j=1}^{n} z_{ij} \cdot \overline{W}_{j}, i = \overline{1, k},$$
(4.3)

где  $\overline{W_j}$  – среднее значение водопоглощения для j-го эксперимента (j=1,...,n).

Рассчитанные значения коэффициентов уравнения регрессии (4.2) сведены в Таблицу 4.2.

Таблица 4.2 – Коэффициенты уравнения регрессии (4.2)

| $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> | <i>b</i> <sub>12</sub> | <i>b</i> 13 | $b_{23}$ | <i>b</i> <sub>123</sub> |
|-------|-------|-------|-----------------------|------------------------|-------------|----------|-------------------------|
| 4,62  | 0,88  | 0,35  | -0,73                 | 0,25                   | -0,37       | -0,45    | -0,85                   |

Проверка значимости коэффициентов уравнения регрессии произведена по критерию Стьюдента, для чего определено среднее квадратическое отклонение коэффициентов уравнения регрессии  $S_{\text{коэф.}}$  по формуле (4.4)

$$S_{\kappa o \ni \phi.} = \sqrt{\frac{S_0^2}{n \cdot m}},\tag{4.4}$$

где  $S_0^2$  – дисперсия воспроизводимости;

n — число экспериментов;

m — число параллельных опытов в каждом эксперименте.

Значение  $S_{\text{коэф.}}$  составило 0,153.

Из таблиц распределения Стьюдента по числу степеней свободы f, определенное по формуле (4.5)

$$f = n (m - 1),$$
 (4.5)

с учетом доверительной вероятности P=0,95, значение критерия Стьюдента  $t_{\rm кр.}$  составило 2,12. Следовательно,  $t_{\rm кр.} \cdot S_{{\rm коэф.}} = 0,33.$ 

Сравнивая полученное значение  $t_{\text{кр.}} \cdot S_{\text{коэф.}} = 0,33$  с коэффициентами уравнения регрессии (Таблица 4.2), сделан вывод о том, что все коэффициенты, кроме  $b_{12}$  (0,25), больше по абсолютной величине 0,33. Следовательно, все коэффициенты уравнения регрессии, кроме  $b_{12}$ , значимы. Полагая  $b_{12}$  равным нулю, получено уравнение регрессии (4.6), описывающее зависимость водопоглощения W огнезащитного покрытия от содержания терморасширяющегося графита ( $z_1$ ), бората цинка ( $z_2$ ) и полифосфата аммония ( $z_3$ ), следующего вида

$$W = 4,62 + 0,88z_1 + 0,35z_2 - 0,73z_3 - 0,37z_1 \cdot z_3 - 0,45z_2 \cdot z_3 - 0,85z_1 \cdot z_2 \cdot z_3.$$
 (4.6)

Проверка полученного уравнения регрессии (4.6) на адекватность проведена по критерию Фишера, расчетное значение которого  $F_{\text{расч.}}$  определено по формуле

$$F_{\text{pacy.}} = \frac{S_{\text{OCT.}}^2}{S_0^2},\tag{4.7}$$

где  $S_{\text{ост.}}^2$  – остаточная дисперсия.

Остаточная дисперсия  $S_{\text{ост.}}^2$  вычислена согласно формуле (4.8)

$$S_{\text{OCT.}}^2 = \frac{m}{n-r} \sum_{j=1}^n \left( \widetilde{W}_j - \overline{W}_j \right)^2, \tag{4.8}$$

где r – число значимых коэффициентов в уравнении регрессии;

 $\widetilde{W}_{\!\!J}$  — значение водопоглощения, вычисленное по уравнению регрессии со значимыми коэффициентами для j-го эксперимента, %;

 $\overline{W_i}$  — среднее значение водопоглощения для *j*-го эксперимента, % (Таблица 4.1).

Результаты проверки уравнения регрессии (4.6) на адекватность сведены в Таблицу (4.3).

Таблица 4.3 – Результаты проверки уравнения регрессии (4.6) на адекватность

| Остаточная          | Расчетное значение | Табличное значение критерия Фишера $F_{\text{табл.}}$      |
|---------------------|--------------------|------------------------------------------------------------|
| дисперсия           | критерия Фишера    | при доверительном интервале $P = 0.95$                     |
| $S_{\text{oct.}}^2$ | $F_{ m pac}$ ч.    | по соответствующим степеням свободы $f_1$ = 1 и $f_2$ = 16 |
| 1,44                | 2,52               | 4,49                                                       |

Так как выполняется условие  $F_{\text{расч.}} < F_{\text{табл.}}$ , то уравнение регрессии (4.6) можно считать адекватным эксперименту.

Проведем интерпретацию полученной модели (4.6). Коэффициенты при независимых переменных (Таблица 4.2) указывают на силу влияния факторов: чем больше численная величина коэффициента, тем большее влияние оказывает данный фактор на величину параметра. Наиболее сильное влияние на отклик (водопоглощение) оказывает фактор  $z_1$  — количество терморасширяющегося графита, так как он имеет наибольший по абсолютной величине коэффициент

(0,88). После него по силе влияния на отклик следует отметить: тройное взаимодействие всех факторов  $z_1 \cdot z_2 \cdot z_3$  (значение коэффициента 0,85); фактор  $z_3$  – количество полифосфата аммония (значение коэффициента 0,73); парное взаимодействие  $z_2 \cdot z_3$  – сочетание бората цинка и полифосфата аммония (значение коэффициента 0,45);  $z_1 \cdot z_3$  – сочетание терморасширяющегося графита и полифосфата аммония (значение коэффициента 0,37); фактор  $z_2$  – количество бората цинка (значение коэффициента 0,35).

Так как коэффициенты при слагаемых  $z_1$  и  $z_2$  положительны, то с увеличением этих факторов увеличивается водостойкость исследуемых композиций. Коэффициенты при слагаемых  $z_3$ ;  $z_1 \cdot z_3$ ;  $z_2 \cdot z_3$ ;  $z_1 \cdot z_2 \cdot z_3$  имеют отрицательный знак, что означает, что с уменьшением фактора  $z_3$  и перечисленных взаимодействий значение отклика будет возрастать, а с увеличением – убывать.

Полученная регрессионная зависимость (4.6) дает возможность оценить вклад каждого из компонентов вспучивающей добавки на водостойкость огнезащитного покрытия (Рисунок 4.3).

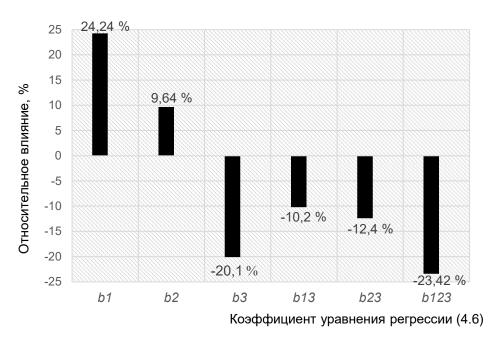



Рисунок 4.3 — Влияние компонентов вспучивающей добавки на водопоглощение огнезащитного покрытия

Таким образом, для получения огнезащитного покрытия с максимальной водостойкостью наиболее эффективным является введение терморасширяющегося

графита и бората цинка, замещение которых, на полифосфат аммония снижает водостойкость материала покрытия примерно в 2 раза.

Экспериментальные данные зависимости водопоглощения W от времени  $\tau$  экспозиции образцов покрытия в воде хорошо описываются уравнением полинома второго порядка (4.9) при коэффициенте корреляции r=0.94

$$W = 0.8333 + 0.0823\tau - 0.0005\tau^{2}.$$
 (4.9)

Результаты эксперимента и расчетные данные по выражению (4.9) позволили построить кривые сорбции воды, позволяющие оценить кинетику водопоглощения W исследуемым образцом огнезащитного покрытия (Рисунок 4.4).

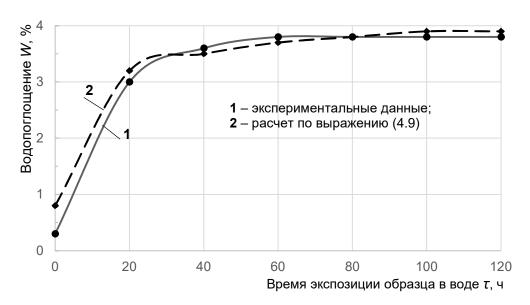



Рисунок 4.4 – Кинетика водопоглощения образцом покрытия

Кривая кинетики установления сорбционного равновесия (Рисунок 4.4) имеет *S*-образную форму, проходит через максимум (точка перегиба), далее процесс сорбции останавливается, и кривая выходит на плато, что свойственно для ограниченно набухающих систем. В настоящем исследовании этот тип кинетики можно связать с релаксационными процессами, сопровождающими процесс диффузии при установлении граничной концентрации сорбата (воды) на поверхности композиционного материала покрытия.

Незначительное количество воды, поглощенное покрытием, можно объяснить низкой реакционной способностью хлоропренового каучука за счет

блокирования двойных связей атомами хлора в молекуле каучука, а также присутствием в составе покрытия нерастворимых в воде гидрофобных компонентов.

Таким образом, разработанное огнезащитное покрытие на основе хлоропренового каучука можно считать устойчивым к воздействию воды.

### Исследование воздействия влажности на огнезащитные свойства покрытия

Проведена оценка влияния и проверка связи между выходным фактором – влагопоглощением H – огнезащитного покрытия и независимыми факторами  $(z_1, z_2, z_3)$ , оказывающими на него влияние с применением полного факторного эксперимента типа  $2^3$ , матрица планирования которого представлена в Таблице 4.4.

Таблица 4.4 — Матрица плана эксперимента по описанию зависимости влагопоглощения H огнезащитного покрытия от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$ 

| Номер<br>эксперимента | Экспериментальный фактор (безразмерное кодовое выражение) |            | Выходной фактор — результат эксперимента (влагопоглощение) $H_i$ , % |       |       | Среднее значение влагопоглощения $\overline{H_j}$ , % | очная<br>грсия<br>;                    | эрсия<br>юдимости<br>2<br>0  |                                           |
|-----------------------|-----------------------------------------------------------|------------|----------------------------------------------------------------------|-------|-------|-------------------------------------------------------|----------------------------------------|------------------------------|-------------------------------------------|
| Ном<br>экспері        | $z_1$                                                     | <b>Z</b> 2 | <i>Z</i> 3                                                           | $H_1$ | $H_2$ | <i>H</i> <sub>3</sub>                                 | Среднее з влагопогл $\overline{H_j}$ , | Выборочная дисперсия $S_j^2$ | Дисперсия<br>воспроизводимости<br>$S_0^2$ |
| 1                     | +1                                                        | +1         | +1                                                                   | 6,4   | 8,4   | 7,4                                                   | 7,4                                    | 1,00                         |                                           |
| 2                     | -1                                                        | +1         | +1                                                                   | 7,8   | 7,0   | 8,6                                                   | 7,8                                    | 0,64                         |                                           |
| 3                     | +1                                                        | -1         | +1                                                                   | 9,3   | 9,0   | 12,3                                                  | 10,2                                   | 1,73                         |                                           |
| 4                     | -1                                                        | -1         | +1                                                                   | 5,7   | 5,8   | 5,8                                                   | 5,8                                    | 0,00335                      | 2.06                                      |
| 5                     | +1                                                        | +1         | -1                                                                   | 15,2  | 17,0  | 18,8                                                  | 17,0                                   | 3,24                         | 2,06                                      |
| 6                     | -1                                                        | +1         | -1                                                                   | 6,0   | 8,4   | 8,4                                                   | 7,6                                    | 1,92                         |                                           |
| 7                     | +1                                                        | -1         | -1                                                                   | 9,4   | 7,0   | 11,8                                                  | 9,4                                    | 5,76                         |                                           |
| 8                     | -1                                                        | -1         | -1                                                                   | 8,1   | 7,8   | 10,5                                                  | 8,8                                    | 2,19                         |                                           |

Рассчитанные коэффициенты уравнения регрессии (4.2) приведены в Таблице 4.5.

Таблица 4.5 – Коэффициенты уравнения регрессии (4.2)

| $b_0$ | $b_1$ | $b_2$ | $b_3$ | <i>b</i> <sub>12</sub> | $b_{13}$ | $b_{23}$ | $b_{123}$ |
|-------|-------|-------|-------|------------------------|----------|----------|-----------|
| 9,26  | 1,73  | 0,72  | -1,44 | 0,53                   | -0,74    | -0,92    | -1,72     |

Сравнивая полученное значение  $t_{\text{кр.}} \cdot S_{\text{коэф.}} = 0,62$  с коэффициентами уравнения регрессии (Таблица 4.5), сделан вывод о том, что все коэффициенты, кроме  $b_{12}$  (0,53), больше по абсолютной величине 0,62. Следовательно, коэффициенты уравнения регрессии, кроме  $b_{12}$ , значимые. Принимая  $b_{12}$  равным нулю, получено уравнение регрессии (4.10), описывающее зависимость влагопоглощения H огнезащитного покрытия от содержания терморасширяющегося графита ( $z_1$ ), бората цинка ( $z_2$ ) и полифосфата аммония ( $z_3$ ), следующего вида

$$H = 9,26 + 1,75z_1 + 0,72z_2 - 1,44z_3 - 0,74z_1 \cdot z_3 - 0,92z_2 \cdot z_3 - 1,70z_1 \cdot z_2 \cdot z_3. \quad (4.10)$$

Результаты проверки уравнения регрессии (4.10) на адекватность по критерию Фишера сведены в Таблицу (4.6).

Таблица 4.6 – Результаты проверки уравнения регрессии (4.10) на адекватность

|  | Остаточная дисперсия $S_{\text{ост.}}^2$ | Расчетное значение       | Табличное значение критерия Фишера $F_{\text{табл.}}$      |
|--|------------------------------------------|--------------------------|------------------------------------------------------------|
|  |                                          | критерия Фишера          | при доверительном интервале $P = 0.95$                     |
|  |                                          | $F_{\rm pac 	ext{-}4}$ . | по соответствующим степеням свободы $f_1 = 1$ и $f_2 = 16$ |
|  | 5,77                                     | 2,80                     | 4,49                                                       |

Уравнение регрессии (4.10) оказалось адекватно эксперименту, так как выполняется условие  $F_{\text{расч.}} < F_{\text{табл.}}$ .

На основании результатов анализа уравнения регрессии (4.10) можно сделать вывод о том, что наиболее сильное влияние на выходной параметр — влагопоглощение, оказывает фактор  $z_1$  — количество терморасширяющегося графита (значение коэффициента 1,75). По силе влияния на отклик следует отметить тройное взаимодействие факторов  $z_1 \cdot z_2 \cdot z_3$  (значение коэффициента 1,70); фактор  $z_3$  — количество полифосфата аммония (значение коэффициента 1,44); парное взаимодействие  $z_2 \cdot z_3$  — сочетание бората цинка и полифосфата аммония

(значение коэффициента 0,92);  $z_1 \cdot z_3$  — сочетание терморасширяющегося графита и полифосфата аммония (значение коэффициента 0,74); фактор  $z_2$  — количество бората цинка (значение коэффициента 0,72).

Коэффициенты при слагаемых  $z_1$  (терморасширяющийся графит) и  $z_2$  (борат цинка) одинаково имеют положительный знак. С увеличением этих факторов увеличивается влагостойкость исследуемых составов. Коэффициенты при слагаемых  $z_3$ ;  $z_1 \cdot z_3$ ;  $z_2 \cdot z_3$ ;  $z_1 \cdot z_2 \cdot z_3$  отрицательные. Это означает, что с уменьшением содержания полифосфата аммония (фактор  $z_3$ ) и перечисленных взаимодействий значение влагопоглощения будет возрастать, а с увеличением, наоборот, убывать. Количественный вклад каждого из компонентов вспучивающей добавки на влагопоглощение огнезащитного покрытия показан на гистограмме (Рисунок 4.5).

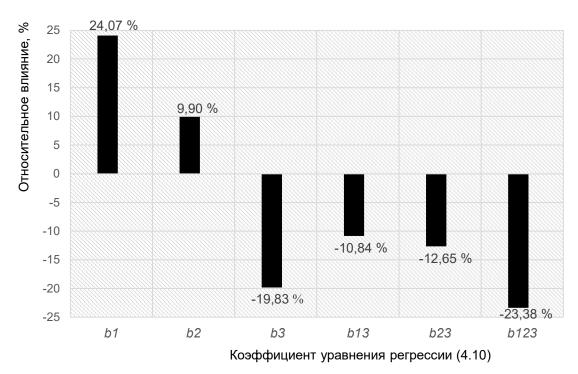



Рисунок 4.5 — Влияние компонентов вспучивающей добавки на влагопоглощение огнезащитного покрытия

Экспериментальные значения зависимости влагопоглощения H огнезащитного покрытия при температуре окружающего воздуха  $(23\pm2)$  °C и относительной влажности близкой к 100 % от времени  $\tau$  экспозиции образцов в парах воды наиболее точно (коэффициент корреляции r=0,99) аппроксимированы полиномиальной зависимостью второго порядка (4.11)

$$H = 0.6381 + 0.8429\tau - 0.0181\tau^{2}.$$
 (4.11)

Экспериментальные и расчетные данные по выражению (4.11) позволили построить кинетические кривые, показывающие изменение процесса влагопоглощения H образцом огнезащитного покрытия со временем  $\tau$  его экспозиции в парах воды (Рисунок 4.6).

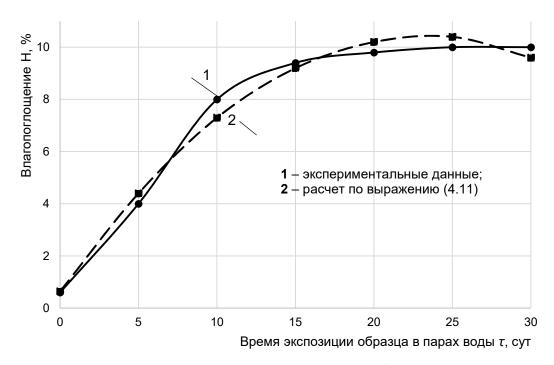



Рисунок 4.6 – Кинетика влагопоглощения образцом покрытия

На кинетической кривой сорбции (Рисунок 4.6) можно выделить три характерных участка. На начальном участке (первые 10 сут эксперимента) наблюдался быстрый рост сорбционной кривой за счет интенсивного насыщения влагой (0,6–8,0%) образцов покрытия. Затем рост поглощения монотонно замедлялся и за период времени воздействия 20–30 сут обеспечивалось достижение равновесного содержания воды при сохранении изменения массы (10%) экспериментальных образцов огнезащитного покрытия.

Высокой сопротивляемости огнезащитного покрытия влажности способствуют накопление активных полярных групп (атомов хлора) в цепной молекуле хлоропренового каучука и наличие в составе композиционного материала покрытия нерастворимых в воде ингредиентов, препятствующих проникновению воды в поверхностные слои защитного покрытия.

При исследовании кинетики изменения массы покрытия в условиях 100 % влажности в течение 30 сут при температуре окружающего воздуха  $(23 \pm 2)$  °C следов разрушения материала покрытия не происходит.

Таким образом, разработанное огнезащитное покрытие на основе хлоропренового каучука можно считать устойчивым к воздействию влажности.

### Исследование устойчивости к переменному воздействию температуры и влажности на огнезащитные свойства покрытия

Проведена оценка влияния и проверка связи между выходным фактором – устойчивость P огнезащитного покрытия к переменному воздействию температуры и влажности и независимыми факторами  $(z_1, z_2, z_3)$ , оказывающими на него влияние с применением полного факторного эксперимента типа  $2^3$ .

Матрица планирования полного факторного эксперимента для описания зависимости устойчивости P огнезащитного покрытия к переменному воздействию температуры и влажности от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$  представлена в Таблице 4.7.

Рассчитанные коэффициенты уравнения регрессии (4.2) приведены в Таблице 4.8. Сравнивая полученное значение  $t_{\text{кр.}} \cdot S_{\text{коэф.}} = 0,52$  с коэффициентами уравнения регрессии (Таблица 4.2), сделан вывод о том, что все коэффициенты, кроме  $b_{12}$  (0,49), больше по абсолютной величине 0,52. Следовательно, все коэффициенты уравнения регрессии, кроме  $b_{12}$ , значимы. Принимая  $b_{12}$  равным нулю, получено уравнение регрессии (4.12), описывающее зависимость устойчивости P огнезащитного покрытия к переменному воздействию температуры и влажности от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$  следующего вида

$$P = 9,22 + 1,76z_1 + 0,74z_2 - 1,42z_3 - 0,76z_1 \cdot z_3 - 0,94z_2 \cdot z_3 - 1,75z_1 \cdot z_2 \cdot z_3. \quad (4.12)$$

Проверка адекватности уравнения регрессии (4.12) проведена по критерию Фишера, результаты проверки сведены в Таблицу (4.9).

Таблица 4.7 – Матрица плана эксперимента по описанию зависимости устойчивости *P* огнезащитного покрытия к переменному воздействию

температуры и влажности от массового содержания терморасширяющегося графита  $(z_1)$ , бората цинка  $(z_2)$  и полифосфата аммония  $(z_3)$ 

| Номер<br>эксперимента | Экспериментальный фактор (безразмерное кодовое выражение) |       |       | Выходной фактор — результат эксперимента (устойчивость к переменному воздействию температуры и влажности) $P_i$ , % |       | Среднее значение стойкости к переменному влиянию колебаний температуры и влажности $\overline{P_j}$ , % | Выборочная дисперсия $S_j^2$                                                | Дисперсия<br>воспроизводимости<br>$S_0^2$ |      |
|-----------------------|-----------------------------------------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|------|
| Н Эксп                | $z_1$                                                     | $z_2$ | $z_3$ | $P_1$                                                                                                               | $P_2$ | $P_3$                                                                                                   | Среднее зна<br>стойкости к перк<br>влиянию коле<br>температу<br>и влажности | Выбороч                                   | ди   |
| 1                     | +1                                                        | +1    | +1    | 6,2                                                                                                                 | 8,6   | 7,4                                                                                                     | 7,4                                                                         | 1,44                                      |      |
| 2                     | -1                                                        | +1    | +1    | 7,8                                                                                                                 | 7,2   | 8,4                                                                                                     | 7,8                                                                         | 0,36                                      |      |
| 3                     | +1                                                        | -1    | +1    | 9,3                                                                                                                 | 9,3   | 12,0                                                                                                    | 10,2                                                                        | 1,62                                      |      |
| 4                     | -1                                                        | -1    | +1    | 6,1                                                                                                                 | 5,4   | 5,8                                                                                                     | 5,8                                                                         | 0,125                                     | 1.46 |
| 5                     | +1                                                        | +1    | -1    | 14,8                                                                                                                | 17,3  | 18,7                                                                                                    | 17,0                                                                        | 2,61                                      | 1,46 |
| 6                     | -1                                                        | +1    | -1    | 6,4                                                                                                                 | 8,0   | 8,4                                                                                                     | 7,6                                                                         | 0,75                                      |      |
| 7                     | +1                                                        | -1    | -1    | 9,0                                                                                                                 | 7,2   | 12,0                                                                                                    | 9,4                                                                         | 3,92                                      |      |
| 8                     | -1                                                        | -1    | -1    | 8,3                                                                                                                 | 8,0   | 10,1                                                                                                    | 8,8                                                                         | 0,86                                      |      |

Таблица 4.8 – Коэффициенты уравнения регрессии (4.2)

| $b_0$ | $b_1$ | $b_2$ | $b_3$ | <i>b</i> <sub>12</sub> | <i>b</i> <sub>13</sub> | $b_{23}$ | $b_{123}$ |
|-------|-------|-------|-------|------------------------|------------------------|----------|-----------|
| 9,22  | 1,76  | 0,74  | -1,42 | 0,49                   | -0,76                  | -0,94    | -1,75     |

Таблица 4.9 – Результаты проверки уравнения регрессии (4.12) на адекватность

| Остаточная дисперсия $S_{ m oct.}^2$ | Расчетное значение критерия Фишера $F_{\text{расч.}}$ | Табличное значение критерия Фишера $F_{\text{табл.}}$ при доверительном интервале $P=0,95$ по соответствующим степеням свободы $f_1=1$ и $f_2=16$ |
|--------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 5,74                                 | 3,93                                                  | 4,49                                                                                                                                              |

Уравнение регрессии (4.12) оказалось адекватно эксперименту, так как выполняется условие  $F_{\rm pacu.}$  <  $F_{\rm Ta6n.}$ 

Наиболее сильное влияние на устойчивость P огнезащитного покрытия к переменному воздействию температуры и влажности оказывает фактор  $z_1$  – количество терморасширяющегося графита (значение коэффициента 1,76). По силе

влияния на отклик следует отметить тройное взаимодействие факторов  $z_1 \cdot z_2 \cdot z_3$  (значение коэффициента 1,74); фактор  $z_3$  – количество полифосфата аммония (значение коэффициента 1,42); парное взаимодействие  $z_2 \cdot z_3$  – сочетание бората цинка и полифосфата аммония (значение коэффициента 0,94);  $z_1 \cdot z_3$  – сочетание терморасширяющегося графита и полифосфата аммония (значение коэффициента 0,76); фактор  $z_2$  – количество бората цинка (значение коэффициента 0,74).

Вклад каждого из компонентов вспучивающей добавки на устойчивость P огнезащитного покрытия к переменному воздействию температуры и влажности показан на гистограмме (Рисунок 4.7).

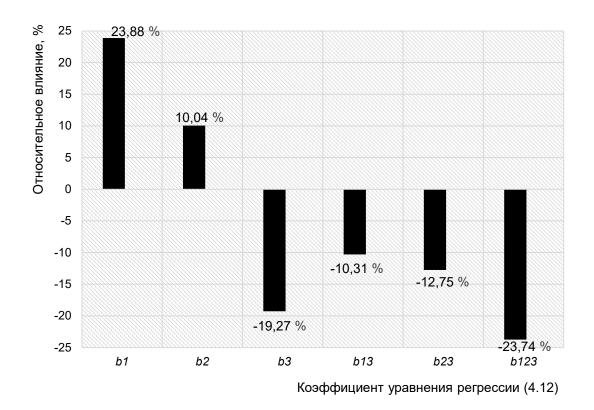



Рисунок 4.7 – Влияние компонентов вспучивающей добавки на устойчивость покрытия к переменному воздействию температуры и влажности

Экспериментальные значения зависимости устойчивости P огнезащитного покрытия к переменному воздействию температуры и влажности от времени  $\tau$  аппроксимированы при коэффициенте корреляции r=0.93 полиномиальной зависимостью второго порядка (4.13)

$$P = 0.3966 + 0.2799\tau - 0.0157\tau^{2}. (4.13)$$

На основании экспериментальных и расчетных данных по выражению (4.13) получены кинетические кривые, показывающие изменение устойчивости P покрытия к переменному воздействию температуры и влажности со временем испытания  $\tau$  в стандартных условиях ускоренного старения (Рисунок 4.8).

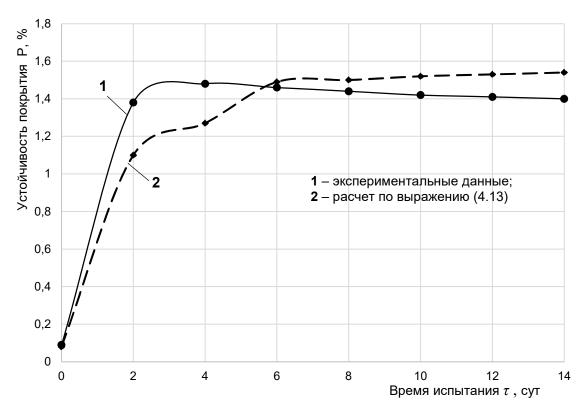



Рисунок 4.8 — Кинетические кривые устойчивости *P* покрытия к переменному воздействию температуры и влажности

После ускоренного старения в результате переменного воздействия на образцы покрытия колебаний температуры  $(23 \pm 5)$  °C,  $(60 \pm 5)$  °C и влажности воздуха  $(65 \pm 5)$  %, 100 % в течение 14 сут, следов разрушения огнезащитного покрытия не выявлено.

### 4.2. Оценка воздействия внешних факторов на огнезащитные свойства покрытия

### Строительные конструкции и материалы из древесины

В России, как и во многих других странах, основным материалом для деревянных конструкций многоэтажного строительства служит сосна.

В связи с этим для изготовления опытных образцов использована древесина заболони сосны. В работе исследованы огнезащитные свойства покрытия на образцах древесины без воздействия и после воздействия внешних факторов. Критерием оценки огнестойкости образцов с покрытием на древесине служила относительная потеря массы  $\Delta m$ , % (Рисунок 4.9).

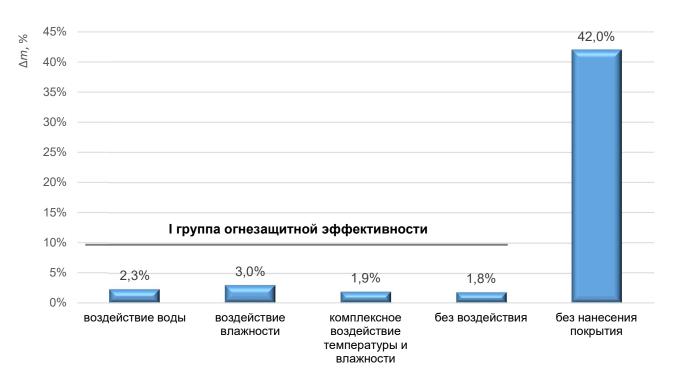



Рисунок 4.9 – Относительная потеря массы образцов после огневых испытаний

Наибольшее значение потери массы (42 %) получено для образцов древесины без нанесения огнезащитного покрытия (Рисунок 4.9). В процессе огневых испытаний образцов, обработанных огнезащитным покрытием, установлено, что пламенное горение ими не поддерживается, покрытие древесины начинает вспучиваться и образуется кокс.

Под снятым слоем кокса структура древесины сохраняется, потеря массы образцов после огневых испытаний находится в диапазоне значений 1,8-3,0 %, что соответствует І группе огнезащитной эффективности для древесины в соответствии с требованиями нормативных документов [82; 94].

### Металлические строительные конструкции

Оценку огнестойкости огнезащитного покрытия на стальных пластинах выполняли на лабораторной установке, предназначенной для испытаний

огнезащитных покрытий в условиях, приближенным к условиям реальных пожаров. Критерием оценки огнестойкости огнезащитного покрытия считали время достижения предельно допустимого значения температуры (500 °C) необогреваемой поверхностью стальной пластины толщиной 1 мм при толщине слоя покрытия 0,5 мм.

Результаты экспериментов аппроксимированы линейными зависимостями с коэффициентом корреляции r = 0.97-0.99 (Таблица 4.10). Результаты испытаний показали, что до момента начала вспучивания тонкослойное огнезащитное покрытие (толщина 0.7 мм) обеспечивает незначительный эффект снижения прироста температуры на необогреваемой поверхности образца.

Это обусловлено теплофизическими характеристиками самого покрытия и возможными физико-химическими процессами, определяющими подготовительную стадию образования вспученного слоя, то есть стадию перехода покрытия в вязкоэластичное состояние. К моменту начала вспучивания температура на необогреваемой стороне образца составляет порядка 130–150 °C.

Кинетика роста температуры покрытия, не подвергнутого воздействию (контрольный образец) и после воздействия воды, влажности и переменного воздействия температуры и влажности практически совпадает, что свидетельствует о сохранении теплоизоляционных свойств вспененного кокса после воздействия внешних факторов на покрытие.

Получено одинаково высокое — близкое к единице значение коэффициента корреляции для всех аналитических зависимостей что свидетельствует о тесной прямой корреляционной связи между результативным (температура нагрева стальной пластины) и факторным (время достижения предельно допустимого значения температуры 500 °C) признаками.

Таблица 4.10 – Результаты испытаний огнезащитного покрытия по оценке огнестойкости

| Влияющий<br>фактор                                      | Поглощение влаги образцом | Время достижения образцом предельной температуры (500 °C), мин | Зависимость, характеризующая изменение температуры стальной пластины со временем испытания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|---------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Вода (3 сут)                                            | 2,7 г·м-2·ч-1             | 10,7                                                           | $T = 46,173\tau + 23,509$ $400 \qquad R^2 = 0,979$ $300$ $200$ $100$ $0$ $2 \qquad 4 \qquad 6 \qquad 8 \qquad 10 \qquad 12$ $\tau, \text{ Muh}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Влажность (30 сут)                                      | 0,1 %                     | 9,3                                                            | $T = 46,855\tau + 44,782$ $R^2 = 0,958$ $T = 46,855\tau + 44,782$ |
| Переменное воздействие температуры и влажности (14 сут) | 0,1 %                     | 10,7                                                           | $T = 42,699 \text{ r} + 31,455$ 500 $R^2 = 0,946$ 400 200 100 0 2 4 6 8 10 12 T, Milh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Без<br>воздействия                                      | _                         | 10,7                                                           | $T = 41,997\tau + 36,273$ $R^{2} = 0,973$ 400 200 100 0 2 4 6 8 10 12 7, Milh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Без<br>огнезащитного<br>покрытия                        | _                         | 5,0                                                            | $T = 80,75\tau + 43,893$ $R^2 = 0,9775$ 100 100 1 2 3 4 5 $T, \text{ мин}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Выводы относительно устойчивости огнезащитного покрытия к воздействию влажности и последующего сохранения огнезащитных свойств также подтверждаются идентичным характером вспучивания при выдержке образцов в изотермическом режиме нагрева при 600 °C в течение 5 мин (Рисунок 4.10).

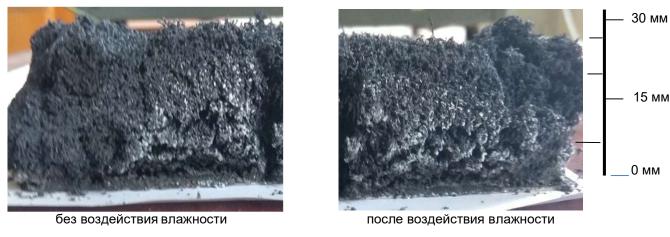



Рисунок 4.10 – Вспучивание огнезащитного покрытия

Как видно из Рисунка 4.10, значение коэффициента вспучивания огнезащитного покрытия без воздействия и после воздействия влажности не изменилось и составило 29 единиц.

# 4.3. Исследование изменения параметров вспучивания огнезащитного покрытия от влияния температуры нагрева покрытия без воздействия и после воздействия внешних факторов

### Исследование изменения кратности вспучивания

Огнезащитные покрытия вспучивающегося типа имеют общую особенность, которая заключается в механизме образования внешнего изоляционного слоя за счет увеличения толщины (объема) покрытия при нагреве. Поэтому при их изучении логично опираться на параметры, которые характеризуют процесс вспучивания и могут быть численно получены в рамках лабораторного эксперимента. В качестве таких целевых параметров в настоящей работе исследованы изменение кратности вспучивания  $\delta$  и массы  $m/m_0$  образцов покрытия в процессе их нагрева, плотность  $\rho$  и пористость  $\varphi$  вспененного кокса после

изотермического нагрева образцов в диапазоне температуры 300–950 K с шагом 50 K.

Образцы огнезащитного покрытия готовили следующим образом. В органический раствор хлоропренового каучука вводили функциональные составляющие: вспенивающие агенты, наполнители, краситель, после чего композицию тщательно перемешивали и тонким слоем  $(0.9 \pm 0.1) \cdot 10^{-3}$  м заливали в форму, изготовленную из алюминиевой фольги размером  $(65 \times 30 \times 15) \cdot 10^{-3}$  м.

После образования отвержденного покрытия образцы выдерживали в муфельной печи в течение 20 мин при заданной температуре, которая поддерживалась автоматически. Диапазон температуры нагрева составил 300-950 K с шагом 50 K. После выдержки образцов в муфельной печи замеряли высоту h и определяли массу m вспученного слоя покрытия.

В зависимости от температуры нагрева наблюдали различные состояния покрытия. При температуре 500 К изменение вспучивания составило 12,5 раз при компактной и сравнительно плотной структуре материала, при более высоких температурах (более 500 К) имело место увеличение вспучивания в 13–40 раз с образованием внутренних участков с упорядоченной сетью пор. Однако при этом кокс оказался рыхлой структуры в виде вытянутых вспученных волокон. Таким образом, каждой температуре соответствует вполне определенный объем, структура и масса образца материала покрытия.

На Рисунке 4.11 представлены зависимости изменения кратности вспучивания  $\delta$  покрытия без воздействия и после воздействия воды, влажности и переменного воздействия температуры и влажности от температуры нагрева покрытия T. Процесс изменения толщины вспученного слоя для исследуемых образцов покрытия без воздействия и после воздействия на них внешних факторов одинаков и состоит из двух стадий. Первой стадии вспучивания соответствует диапазон довольно низких температур 400–550 K, второй стадии — 550–650 K. Далее кривые вспучивания выходят на плато с практически постоянными значениями кратности вспучивания 32,3–40,0 единиц.

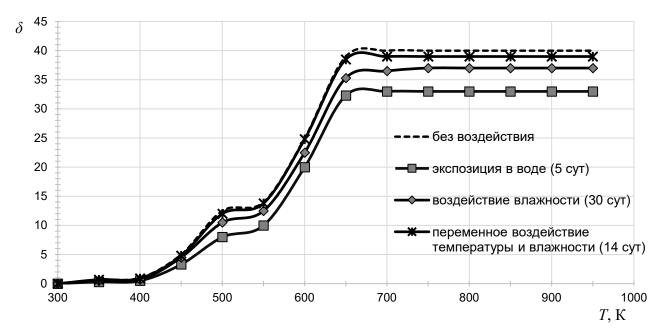



Рисунок 4.11 — Зависимость изменения кратности вспучивания от температуры нагрева покрытия без воздействия и после воздействия внешних факторов

Высота первого плато соответствует кратности вспучивания примерно 8—14 единиц, что является определенным преимуществом состава материала покрытия, так как при низких температурах нагрева сильнее блокируются процессы переноса тепла. Процесс вспучивания покрытия, начиная с температуры 550 К, приобретает довольно резкий характер.

Экспериментальные данные удовлетворительно аппроксимированы линейными уравнениями с достоверностью аппроксимации r = 0.93 (Таблица 4.11).

Таблица 4.11 – Зависимости, характеризующие изменение кратности вспучивания от температуры нагрева образца

| Влияющий фактор                                     | Зависимость, характеризующая изменение кратности вспучивания $\delta$ от температуры нагрева образца $T$ | Коэффициент корреляции $r$ |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| Без воздействия                                     | $\delta$ = 24,755 + 0,0781 $T$                                                                           |                            |
| Вода (5 сут)                                        | $\delta = 21,625 + 0,0657 T$                                                                             | 0.00                       |
| Влажность (30 сут)                                  | $\delta = 23,44 + 0,0727 T$                                                                              | 0,93                       |
| Переменное влияние температуры и влажности (14 сут) | $\delta$ = 24,126 + 0,0763 $T$                                                                           |                            |

Получено одинаково высокое значение коэффициента корреляции для всех аналитических зависимостей (Рисунок 4.11), близкое к единице, что свидетельствует о тесной прямой корреляционной связи между результативным (изменение кратности  $\delta$  вспучивания) и факторным (температура нагрева образца T) признаками.

#### Исследование изменения массы

Исследована зависимость изменения массы  $m/m_0$  огнезащитного покрытия без воздействия и после воздействия воды, влажности и переменного влияния температуры и влажности от температуры нагрева покрытия T (Рисунок 4.12).

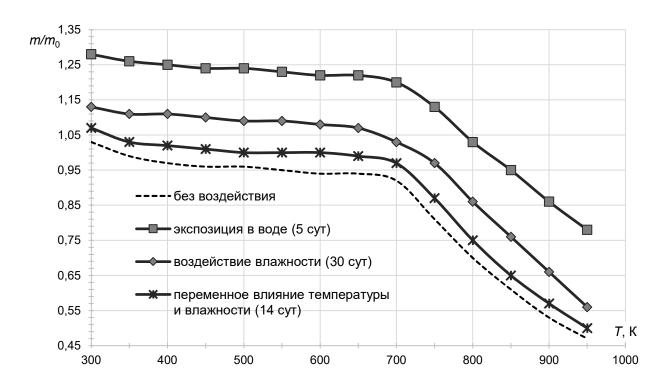



Рисунок 4.12 — Зависимость изменения массы от температуры нагрева покрытия без воздействия и после воздействия внешних факторов

Характер кривых изменения массы от температуры нагрева образцов покрытия без и после воздействия внешних факторов, практически, совпадает. Начало интенсивного изменения массы для всех исследуемых огнезащитного покрытия происходит в диапазоне температуры 700-950 К, при выход кокса составляет 0,47-0,78 единиц (Рисунок 4.12). конечный ЭТОМ Волнообразный кривой объяснить характер изменения массы онжом многостадийностью протекания термической деструкции материала покрытия.

Следует отметить, что для всех испытанных образцов покрытия в начальный период преобладает вспучивание над процессом выделения газообразных продуктов. Так, при температуре 500 К и потере массы 5 % имеет место 13-кратный рост толщины слоя покрытия, что является главным механизмом, ответственным за формирование огнезащитных свойств покрытия.

Экспериментальные данные удовлетворительно аппроксимированы линейными уравнениями с достоверностью аппроксимации r=0.88 и 0.91 (Таблица 4.12).

Таблица 4.12 — Зависимости, характеризующие изменение массы от температуры нагрева образца

| Влияющий фактор                                     | Зависимость, характеризующая изменение массы $m/m_0$ от температуры нагрева образца $T$ | Коэффициент корреляции <i>r</i> |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|
| Без воздействия                                     | $m/m_0 = 1,3323 - 0,0008T$                                                              | 0,91                            |
| Вода (5 сут)                                        | $m/m_0 = 1,5666 - 0,0007T$                                                              | 0,88                            |
| Влажность (30 сут)                                  | $m/m_0 = 1,4668 - 0,0008T$                                                              | 0,88                            |
| Переменное влияние температуры и влажности (14 сут) | $m/m_0 = 1,3925 - 0,0008T$                                                              | 0,88                            |

Значения коэффициентов корреляции (Таблица 4.12) между значениями изменения массы  $m/m_0$  от температуры нагрева образца T достаточно высокие и стремятся к единице, что свидетельствует о наличии тесной линейной корреляционной связи отрицательной направленности (Рисунок 4.12).

#### Исследование изменения плотности и пористости кокса

Исследована зависимость изменения плотности  $\rho/\rho_0$  кокса огнезащитного покрытия без воздействия и после воздействия воды, влажности, переменного влияния температуры и влажности от температуры нагрева покрытия T (Рисунок 4.13). Процесс изменения плотности кокса от температуры нагрева образцов покрытия без и после воздействия на них внешних факторов носит, практически, одинаковый характер.

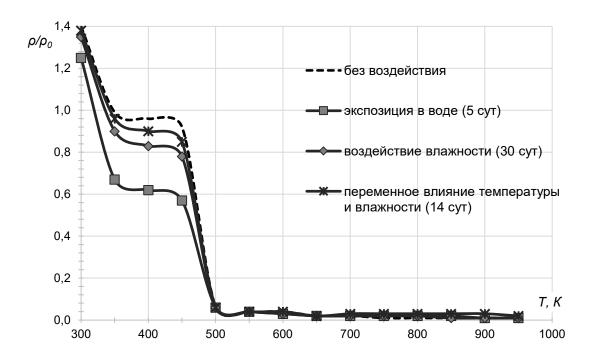



Рисунок 4.13 — Зависимость изменения плотности кокса от температуры нагрева покрытия без воздействия и после воздействия внешних факторов

Для всех исследуемых образцов огнезащитного покрытия изменение плотности кокса составляет 16 раз на первой стадии вспучивания (диапазон температуры 400–500 K), на второй стадии (диапазон температуры 500–650 K) – всего 3 раза (Рисунок 4.13). С ростом температуры нагрева образцов огнезащитного покрытия плотность образующегося кокса уменьшается. В диапазоне температуры 750–950 K процесс структурирования кокса прекращается, что свидетельствует о формировании стабильного и стойкого изолирующего вспученного слоя покрытия, определяющего в значительной степени уровень его огнезащитной эффективности.

Экспериментальные данные аппроксимированы линейными уравнениями с достоверностью аппроксимации r=0.80–0.81 (Таблица 4.13).

Как видно из данных Таблицы 4.13, значения коэффициента корреляции близкие к единице, направленность корреляционной связи между значениями изменения плотности  $\rho/\rho_0$  кокса от температуры нагрева образца T имеет отрицательный характер (Рисунок 4.13).

Таблица 4.13 – Зависимости, характеризующие изменение плотности кокса от температуры нагрева образца

| Влияющий фактор                                     | Зависимость, характеризующая изменение плотности $\rho/\rho_0$ кокса от температуры нагрева образца $T$ | Коэффициент корреляции <i>r</i> |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|
| Без воздействия                                     | $\rho/\rho_0 = 1,5331 - 0,0019 T$                                                                       | 0,81                            |
| Вода (5 сут)                                        | $\rho/\rho_0 = 1{,}1438 - 0{,}0014T$                                                                    | 0,80                            |
| Влажность (30 сут)                                  | $\rho/\rho_0 = 1{,}3967 - 0{,}0018T$                                                                    | 0,81                            |
| Переменное влияние температуры и влажности (14 сут) | $\rho/\rho_0 = 1,4608 - 0,0018T$                                                                        | 0,80                            |

Исследована зависимость изменения пористости кокса огнезащитного покрытия без воздействия и после воздействия на него воды, влажности, переменного влияния температуры и влажности от температуры нагрева покрытия Т (Рисунок 4.14).

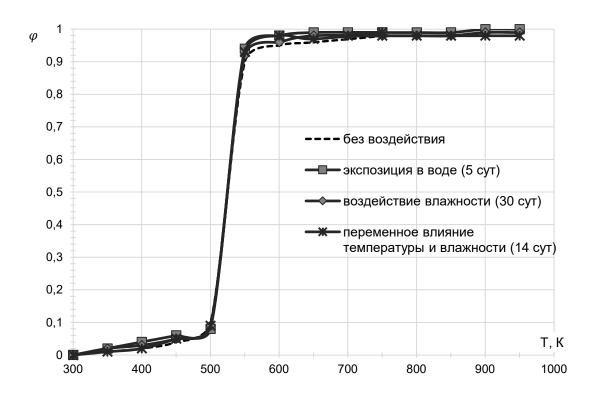



Рисунок 4.14 — Зависимость изменения пористости кокса от температуры нагрева покрытия без воздействия и после воздействия внешних факторов

Кривые зависимости изменения пористости кокса от температуры нагрева покрытия без воздействия и после воздействия внешних факторов, практически, совпадают. С увеличением температуры нагрева образцов в диапазоне температуры

500–700 К и кратности вспучивания покрытия в интервале 12–40 единиц, пористость кокса образцов покрытия увеличилась в 10,8 раза.

В интервале температур 750–950 К изменения пористости кокса не наблюдается, что свидетельствует о прекращении процесса структурирования кокса и формировании стабильного устойчивого вспученного слоя покрытия, что является важным условием обеспечения высокого уровня его огнезащитной эффективности.

Кинетическая кривая изменения пористости кокса от температуры нагрева образца (Рисунок 4.14) характеризуется резким ростом значений от 0,04 до 0,9 единиц на первой стадии вспучивания. Конечное значение пористости кокса составило 0,98–0,99 единиц. Экспериментальные данные аппроксимированы линейными уравнениями с достоверностью аппроксимации r = 0,85-0,86 (Таблица 4.14).

Таблица 4.14 – Зависимости, характеризующие изменение пористости кокса от температуры нагрева образца

| Влияющий фактор                                     | Зависимость, характеризующая изменение пористости $\varphi$ кокса от температуры нагрева образца $T$ | Коэффициент корреляции <i>r</i> |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|
| Без воздействия                                     | $\varphi = 0,5553 + 0,0019T$                                                                         | 0,85                            |
| Вода (5 сут)                                        | $\varphi = 0.5551 + 0.0019T$                                                                         | 0,86                            |
| Влажность (30 сут)                                  | $\varphi = 0.5545 + 0.0019T$                                                                         | 0,85                            |
| Переменное влияние температуры и влажности (14 сут) | $\varphi = 1,5550 + 0,0019T$                                                                         | 0,86                            |

Полученные значения коэффициента корреляции аналитических зависимостей (Рисунок 4.14) между изменением пористости  $\varphi$  кокса от температуры нагрева образца T близки к единице, что свидетельствует о тесной прямой корреляционной связи между результативным (пористость  $\varphi$  кокса) и факторным (температура нагрева образца T) признаками.

В условиях нестационарной теплопередачи, когда поле температур в твердом теле изменяется не только в пространстве, но и во времени, толщина вспученного слоя значительно влияет на огнезащитную способность покрытия. Увеличение

коэффициента вспучивания до 40 единиц можно отнести к определенному преимуществу огнезащитного покрытия.

Однако дальнейшее увеличение толщины слоя (объема) кокса нецелесообразно, так как это приводит к усилению радиационного переноса тепла в пористой среде, следовательно, к возможному снижению механической и когезионной прочности кокса ввиду нарушения целостности структуры.

Логично предположить, что для повышения огнезащитной эффективности покрытия наиболее эффективно снижение потери массы, а также повышение плотности и прочности вспененного кокса, образующегося при высоких температурах. Анализ представленных результатов показал принципиальную возможность определения параметров вспененного кокса в качестве переменного количественного критерия оценки эффективности огнезащитных покрытий.

### 4.4. Выводы к Главе 4

- 1. Получены регрессионные зависимости, описывающие влияние содержания компонентов вспучивающей добавки – терморасширяющегося графита, бората цинка и полифосфата аммония (формулы (4.6), (4.10), (4.12)) при значении критерия Фишера 2,52-3,93 на водопоглощение, влагопоглощение и устойчивость огнезащитного покрытия к переменному воздействию температуры и влажности. В полученных моделях (4.6), (4.10), (4.12) коэффициенты  $b_1$  и  $b_2$ свидетельствует положительные, ЧТО 0 положительном терморасширяющегося графита и бората цинка на устойчивость огнезащитного покрытия к воздействию внешних факторов.
- 2. Установлено, что увеличение содержания полифосфата аммония от 10 % до 20 % в составе вспучивающей добавки, сопровождается снижением устойчивости огнезащитного покрытия к воздействию внешних факторов.
- 3. Результаты регрессионного анализа подтверждены кинетическими зависимостями (Рисунок 4.4, Рисунок 4.6, Рисунок 4.8), описывающими процессы водопоглощения, влагопоглощения и устойчивости огнезащитного покрытия к

переменному воздействию температуры и влажности при коэффициенте корреляции 0,84–0,99 (формулы (4.9), (4.11), (4.13)).

- 4. На основании результатов экспериментальных исследований установлено, что вода, влажность, переменное воздействие температуры и влажности не оказывают влияния на эксплуатационные параметры огнезащитного покрытия І группа огнезащитной эффективности для древесины и теплоизоляционные свойства вспененного кокса не изменились. Таким образом, огнезащитное покрытие на основе хлоропренового каучука для повышения огнестойкости деревянных и металлических конструкций можно считать влаго- и водостойким. Водопоглощение образцов покрытия, погружаемых в воду в течение 5 сут, составило 3,8 %; подвергающихся воздействию влажного воздуха в течение 30 сут, а также переменному воздействию температуры и влажности (14 сут) 10 %.
- 5. Исследованы свойства и определены параметры кокса, образующегося в результате нагрева и вспучивания огнезащитного покрытия. Получены аналитические зависимости изменения кратности вспучивания, потери массы, плотности и пористости вспененного кокса от температуры, что позволило получить более детальную информацию о структуре и прочности кокса на различных стадиях термического нагрева покрытия.

#### ГЛАВА 5.

# ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ОГНЕЗАЩИТНОГО ПОКРЫТИЯ ПУТЕМ МОДЕЛИРОВАНИЯ КОМПОНЕНТНОГО СОСТАВА

# 5.1. Объект и количественные критерии оптимизации параметров огнезащитного покрытия

Разработка рецептуры и изучение огнезащитных свойств покрытия экспериментальными способами представляет собой серьезную проблему, которая заключается в трудоемкости проведения экспериментов и сложности получения полной информации, отражающей поведение материала покрытия под воздействием пожарной нагрузки. Перспективным направлением можно считать исследования по оптимизации параметров многокомпонентного вспучивающегося покрытия и изучению его огнезащитных свойств с использованием методов численного моделирования, позволяющих получать требуемые параметры максимально точно и достоверно для испытываемого покрытия.

Объектом исследования являлось огнезащитное покрытие на основе хлоропренового каучука, базовая рецептура которого была разработана нами на основании результатов предыдущих исследований. Изучение свойств огнезащитного покрытия проводилось в два этапа — в условиях изотермического нагрева и после огневого воздействия на образцы древесины, защищенные покрытием.

Количественными критериями, определяющими параметры огнезащитных свойств покрытия, в работе приняты коэффициент вспучивания и потеря массы образцов после нагрева. В ходе экспериментальных исследований выявлено, что оптимальными с точки зрения процесса объемного расширения являются серии составов на основе хлоропренового каучука со вспучивающими добавками — терморасширяющимся графитом, боратом цинка и полифосфатом аммония.

Исходя из этого, для оптимизации параметров огнезащитного покрытия входными переменными (x) выбраны массовые содержания указанных

компонентов. В качестве выходных переменных  $(y_i)$  взято среднее значение коэффициента вспучивания  $K_{\text{всп}}$  и потери массы  $\Delta m$  двух параллельных опытов, принятые в работе критериями оптимизации.

# 5.2. Результаты экспериментальных исследований модельных смесей

Матрица планирования неполного третьего порядка в координатах симплекса и состав огнезащитного покрытия в реальных переменных в этих же точках представлены в Таблице 5.1.

Таблица 5.1 – Матрица планирования и результаты эксперимента

| Значания факторов                                          | Номер опыта |       |       |       |       |       |       |       |
|------------------------------------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Значения факторов                                          |             | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
| Кодированные:                                              |             |       |       |       |       |       |       |       |
| $-$ борат цинка $x_1$                                      | 1,000       | 0,000 | 0,000 | 0,500 | 0,500 | 0,000 | 0,333 | 0,600 |
| $-$ полифосфат аммония $x_2$                               | 0,000       | 1,000 | 0,000 | 0,500 | 0,000 | 0,500 | 0,333 | 0,300 |
| $-$ терморасширяющийся графит $x_3$                        | 0,000       | 0,000 | 1,000 | 0,000 | 0,500 | 0,500 | 0,333 | 0,100 |
| Натуральные:                                               |             |       |       |       |       |       |       |       |
| Массовая концентрация, %                                   |             |       |       |       |       |       |       |       |
| – борат цинка                                              | 10,0        | 2,0   | 2,0   | 6,0   | 6,0   | 2,0   | 4,6   | 6,8   |
| <ul><li>полифосфат аммония</li></ul>                       | 60,0        | 68,0  | 60,0  | 64,0  | 60,0  | 64,0  | 62,7  | 62,4  |
| <ul> <li>терморасширяющийся графит</li> </ul>              | 30,0        | 30,0  | 38,0  | 30,0  | 34,0  | 34,0  | 32,7  | 30,8  |
| Среднее значение потери массы $\Delta m$                   | 0,07        | 0,06  | 0,04  | 0,05  | 0,03  | 0,02  | 0,04  | 0,02  |
| Среднее значение коэффициента вспучивания $K_{\text{всп}}$ | 11          | 15    | 28    | 14    | 21    | 30    | 25    | 14    |

Эмпирические зависимости интерполировалась 7-параметрическим приведенным полиномом неполного третьего порядка следующего вида [121]

$$\widehat{y} = \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3 + \beta_{12} \cdot x_1 \cdot x_2 + \beta_{13} \cdot x_1 \cdot x_3 + \beta_{23} \cdot x_2 \cdot x_3 + \beta_{123} \cdot x_1 \cdot x_2 \cdot x_3, \tag{5.1}$$

где  $\hat{y}$  – среднее значение отклика по двум параллельным измерениям;  $\beta_1, \beta_2, \beta_3$  – коэффициенты уравнения полинома;

 $x_1, x_2, x_3$  — количество компонента (бората цинка,  $\Pi \Phi A$ ,  $TP\Gamma$ , соответственно) в смеси, доля единицы.

Коэффициенты уравнения полинома (5.1), которые отображают зависимость потери массы образцов  $\Delta m$  и кратности вспучивания ( $K_{\rm всп}$ ) от соотношения компонентов ( $x_i$ ), рассчитаны по экспериментальным данным с помощью соотношений [121]

$$\beta_1 = y_1,$$
  $\beta_2 = y_2,$   $\beta_3 = y_3,$   $\beta_{12} = 4y_{12} - 2y_1 - 2y_2,$   $\beta_{13} = 4y_{13} - 2y_1 - 2y_3,$   $\beta_{23} = 4y_{23} - 2y_2 - 2y_3,$   $\beta_{123} = 27y_{123} - 12(y_{12} + y_{13} + y_{23}) + 3(y_1 + y_2 + y_3).$ 

После подстановки вычисленных коэффициентов в уравнение (5.1) получена регрессионная модель (5.2), характеризующая изменение кратности вспучивания

$$K_{\text{BCII}} = 11x_1 + 15x_2 + 28x_3 - 4x_1 \cdot x_2 - 6x_1 \cdot x_3 - 34x_2 \cdot x_3 + 57x_1 \cdot x_2 \cdot x_3$$
 (5.2)

и регрессионная модель (5.3), характеризующая изменение потери массы

$$\Delta m = 0.07x_1 + 0.06x_2 + 0.04x_3 - 0.06x_1 \cdot x_2 - 0.1x_1 \cdot x_3 - 0.12x_2 \cdot x_3 + 0.39x_1 \cdot x_2 \cdot x_3,$$
 (5.3) от состава трехкомпонентной вспучивающей добавки.

Из моделей (5.2) и (5.3) следует, что с точки зрения получения огнезащитного покрытия с максимальным вспучиванием, наиболее эффективным является введение терморасширяющегося графита (значение параметра при первой степени  $x_3$  максимально). Замещение терморасширяющегося графита на борат цинка и полифосфат аммония снижает коэффициент вспучивания примерно в 2 раза. В то ИЗ требования обеспечения высокой огнезащитной же время, исходя эффективности покрытия, совместное введение терморасширяющегося графита, бората цинка и полифосфата аммония решает эту задачу за счет комбинированного механизма вспучивания графита и ячеистого вспучивания (вспенивания) бората цинка и полифосфата аммония.

Как видно из представленных результатов (Таблица 5.1), для всех средних значений потери массы испытанных образцов древесины с покрытием выполняется

неравенство  $\Delta m < 9$ %, что соответствует первой группе огнезащитной эффективности покрытия. Это позволяет утверждать, что область факторного пространства при выполнении оптимизации выбрана рационально.

Следует подчеркнуть, что наиболее низкие значения потери массы образцами достигаются при достаточно высоких средних значениях коэффициента вспучивания коксового слоя  $K_{\rm BC} = 21-30$ . Увеличение количества интумесцентных фаз сопровождается возрастанием коэффициента вспучивания при одновременном снижении потери массы покрытия.

Анализ полученных регрессионных моделей (5.2) и (5.3) позволяет сделать вывод о том, что основным фактором, влияющим на коэффициент вспучивания и потерю массы, следовательно, и на огнезащитную эффективность покрытия, является массовая доля бората цинка, полифосфата аммония и терморасширяющегося графита.

Проверку однородности дисперсий воспроизводимости параметров оптимизации проводили по критерию Кохрена (C-критерию). Для определения расчетного значения C-критерия  $C_p$  находили отношение наибольшей из оценок дисперсий воспроизводимости  $S_{i}^2$  по формуле (5.4)

$$C_p = \frac{S_i^2 \max}{\sum_{i=1}^N S_i^2}$$
 (5.4)

Расчетное значение С-критерия для параметра оптимизации – кратность вспучивания составило 0,295, потери массы – 0,467. Табличное значение критерия Кохрена  $C_{\text{табл}} = 0,727$  находили с учетом доверительной вероятности P = 0,95, числа серии экспериментов n=7, числа повторных измерений в серии m=2 и числа степеней свободы  $f = n \ (m-1) = 7$ . Поскольку условие  $C_p < C_{\text{табл}}$  выполнено, можно сделать вывод о том, что различия между дисперсиями параметров все измерения обеспечивают оптимизации незначимые И одинаковую воспроизводимость результатов, следовательно, гипотеза об однородности дисперсий групп наблюдений принимается.

Оценку значимости коэффициентов модели (5.2) и (5.3) выполняли по критерию Стьюдента (*t*-критерию) при выполнении условия неравенства (5.5)

$$|\beta_i| \ge t \cdot S(\beta_i), \tag{5.5}$$

где  $|\beta_i|$  — модуль значения коэффициента регрессии;

*t* – табличное значение критерия Стьюдента;

 $S(\beta_i)$  – квадратическая ошибка коэффициента регрессии.

Квадратическую ошибку каждого коэффициента регрессии  $S(\beta_i)$  рассчитывали по формуле (5.6)

$$S(\beta_i) = \frac{2 \cdot \sum_{i=1}^{N} (y_i - \bar{y}_{i})^2}{N\sqrt{N}},$$
 (5.6)

где  $y_i$  – значение параметра в конкретном опыте;

 $\overline{y}_i$  — среднее значение параметра из серии повторных опытов  $i\text{-}\Breve{u}$  точки плана;

N — число серии экспериментов.

Табличное значение критерия Стьюдента  $t_T$  для числа степеней свободы f=7 и доверительной вероятности P=0.95 составило 2,365. Абсолютные значения (Таблица 5.2) всех коэффициентов уравнения полинома (5.2) и (5.3) удовлетворяют неравенству (5.5), что подтверждает их значимость в модели.

Адекватность модели (5.2) и (5.3) оценивали в проверочной точке 8 (Таблица 5.1) по критерию Фишера (F-критерию) путем сравнения его расчетного значения с табличным. Доверительный интервал, определяющий ошибку предсказываемого отклика, равен 0.05. Расчетное значение F-критерия определяли по формуле

$$F = \frac{S_{\text{ag}}^2}{S_i^2},\tag{5.7}$$

где  $S_{\text{ад}}^2$  – дисперсия адекватности;

 $S_i^2$  – дисперсия воспроизводимости.

Дисперсию адекватности рассчитывали по формуле

$$S_{\text{ad}}^2 = \frac{m}{N - k - 1} \cdot \sum_{i=1}^{N} (y_i^p - \bar{y}_i)^2,$$
 (5.8)

где k – число факторов;

 $y_i^{\rm p}$  — значение параметра в i-й точке плана, рассчитанное по уравнению регрессии.

Таблица 5.2 – Оценка значимости коэффициентов модели

| Значение коэффициента                                     | Результат проверки $(t \cdot S(b_i))$ |  |  |
|-----------------------------------------------------------|---------------------------------------|--|--|
| Модель зависимости «состав – кратность вспучивания» (5.2) |                                       |  |  |
| $\beta_1 = 11$                                            | 0,014                                 |  |  |
| $\beta_2 = 15$                                            | 0,005                                 |  |  |
| $\beta_3 = 28$                                            | 0,005                                 |  |  |
| $\beta_{12} = 4$                                          | 0,011                                 |  |  |
| $\beta_{13} = 6$                                          | 0,002                                 |  |  |
| $\beta_{23} = 34$                                         | 0,004                                 |  |  |
| $\beta_{123} = 57$                                        | 0,005                                 |  |  |
| Модель зависимости «со                                    | став – потеря массы» (5.3)            |  |  |
| $\beta_1 = 0.07$                                          | $0,201 \cdot 10^{-5}$                 |  |  |
| $\beta_2 = 0.06$                                          | $0.007 \cdot 10^{-5}$                 |  |  |
| $\beta_3 = 0.04$                                          | $0,105 \cdot 10^{-5}$                 |  |  |
| $\beta_{12} = 0.06$                                       | $0.021 \cdot 10^{-5}$                 |  |  |
| $\beta_{13} = 0.10$                                       | 0,017·10 <sup>-5</sup>                |  |  |
| $\beta_{23} = 0.12$                                       | $0.007 \cdot 10^{-5}$                 |  |  |
| $\beta_{123} = 0.39$                                      | $0,004 \cdot 10^{-5}$                 |  |  |

Расчетное значение F-критерия для модели (5.2) составило 3,2, для модели (5.3) – 3,7. Табличное значение критерия Фишера при доверительной вероятности P = 0,95, числе степеней свободы  $f_1 = 3$  при определении дисперсии адекватности  $S_{\rm ad}^2$  и  $f_2 = 7$  при определении дисперсии воспроизводимости, составило 4,4. Так как расчетные значения F-критерия меньше табличного, гипотеза о неадекватности моделей (5.2) и (5.3) отвергается.

# 5.3. Анализ и представление результатов оптимизации в виде диаграммы «состав – свойство»

Проведем анализ полученных на основании экспериментальных данных полиномиальных моделей (5.2) и (5.3), которые являются математическим отображением наиболее существенных взаимосвязей между параметрами, определяющими огнезащитные свойства покрытия – коэффициентом вспучивания, потерей массы и составом вспучивающейся добавки, представляющей собой смесь бората цинка, полифосфата аммония и терморасширяющегося графита.

Абсолютные значения коэффициентов при слагаемых уравнений приведенных полиномов неполного третьего порядка (5.2) и (5.3) показывают количественное воздействие каждого фактора на результативный показатель – коэффициент вспучивания и потерю массы. Чем выше значение коэффициента, тем большее влияние оказывает соответствующий фактор на результативный показатель. О характере влияния факторов говорят знаки коэффициентов. Знак плюс свидетельствует о том, что с увеличением значения фактора растет величина параметра оптимизации, а при знаке минус – убывает.

Уравнение приведенного полинома (5.2) состоит из линейной и нелинейной частей. В линейной части уравнения полинома ( $11x_1$ ;  $15x_2$ ;  $28x_3$ ) явно преобладает вклад в расчетное значение коэффициента вспучивания третьего компонента ( $x_3$  – терморасширяющийся графит).

Нелинейная часть приведенного полинома (5.2) состоит из квадратичной  $(4x_1 \cdot x_2; 6x_1 \cdot x_3; 34x_2 \cdot x_3)$  и кубической  $(57x_1 \cdot x_2 \cdot x_3)$  составляющих. Нелинейная часть приведенного полинома называется синергизмом, если она вызывает увеличение коэффициента вспучивания по сравнению со значением коэффициента вспучивания, предсказываемого линейной частью, и антагонизмом — в противном случае.

Положительный знак при факторах  $x_1$ ,  $x_2$ ,  $x_3$  и их произведениях указывает на синергизм их влияния на выходной параметр. Как видно из уравнения приведенного полинома (5.2), явление синергизма для нелинейной части полинома определяет только кубический  $\beta_{123}$  (57) коэффициент, то есть вклад в увеличение коэффициента

вспучивания вносит тройная система борат цинка  $(x_1)$  – полифосфат аммония  $(x_2)$  – терморасширяющийся графит  $(x_3)$ .

Отрицательный знак при факторах  $x_1$ ,  $x_2$  и  $x_3$  и их произведениях указывает на антагонизм их влияния на процесс вспучивания. Явление антагонизма наблюдается для нелинейной части приведенного полинома и связано с квадратичными коэффициентами  $\beta_{12}$  (-4),  $\beta_{13}$  (-6),  $\beta_{23}$  (-34).

Для приведенного полинома (5.3) нелинейная часть состоит из квадратичной  $(0,06x_1\cdot x_2;\ 0,1x_1\cdot x_3;\ 0,12x_2\cdot x_3)$  и кубической  $(0,39x_1\cdot x_2\cdot x_3)$  составляющих. Из уравнения приведенного полинома (5.3) следует, что явление синергизма для нелинейной части полинома определяет только кубический  $\beta_{123}$  (0,39) коэффициент, то есть наибольший вклад в изменение потери массы вносит тройная система борат цинка  $(x_1)$  – полифосфат аммония  $(x_2)$  – терморасширяющийся графит  $(x_3)$ .

Так как одной из задач эксперимента являлось построение диаграмм «состав – свойство», то для изображения систем, состоящих из трех компонентов, применялись треугольные диаграммы. Представление зависимости «состав – свойство» трехкомпонентных смесей в виде диаграммы является наиболее наглядным.

Обработку экспериментальных данных и результатов, полученных с помощью симплекс-планирования, а также расчеты моделей проводили с помощью табличного редактора Excel и универсальной интегрированной программы для статистического анализа STATISTICA 10.0. На основании результатов экспериментальных исследований и данных математической обработки построены диаграммы «состав – кратность вспучивания» (Рисунок 5.1) и «состав – потеря массы» (Рисунок 5.2).

Линии равного уровня (контурные изолинии) на диаграмме, представленной на Рисунке 5.1, соединяют трехкомпонентные составы вспучивающей добавки с одинаковыми значениями кратности вспучивания, на диаграмме (Рисунок 5.2) – с одинаковыми значениями потери массы.

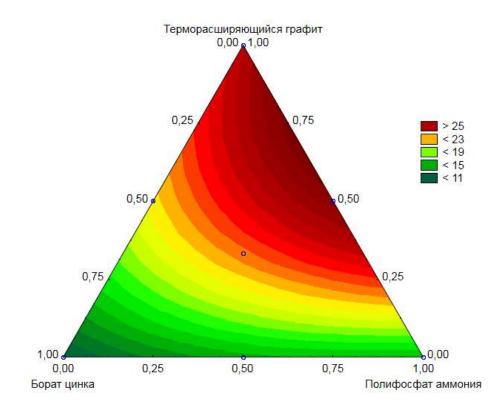



Рисунок 5.1 – Диаграмма «состав – кратность вспучивания»

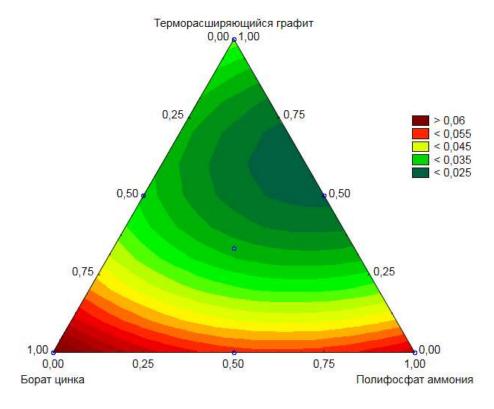



Рисунок 5.2 – Диаграмма «состав – потеря массы» Из представленных результатов (Рисунок 5.1 и Рисунок 5.2) следует вывод о том, что увеличение количества интумесцентной фазы (терморасширяющегося графита) и уменьшение содержания полифосфата аммония приводит к росту коэффициента вспучивания от 11 до 44 единиц при одновременном снижении

потери массы с 7 до 1 %. Увеличение коэффициента вспучивания до 44 единиц можно отнести к определенному преимуществу огнезащитного покрытия.

Однако дальнейшее увеличение толщины слоя кокса нецелесообразно, так как это приводит к усилению радиационного переноса тепла в пористой среде, следовательно, к возможному снижению механической и когезионной прочности кокса ввиду нарушения целостности структуры. Можно сделать вывод о том, что повышение огнезащитной эффективности покрытия можно достичь путем снижения потери массы, повышения плотности и прочности вспененного кокса при высоких температурах.

# 5.4. Оценка экономической эффективности внедрения разработанного огнезащитного покрытия вспучивающегося типа

К одному из рациональных способов снижения стоимости огнезащиты деревянных и металлических конструкций относят применение огнезащитных покрытий небольшой толщины (не более 1–2 мм). Применение огнезащитных покрытий вспучивающегося типа связано с упрощением технологии его нанесения и отсутствием необходимости его армирования.

Экономическая эффективность внедрения состоит из следующих преимуществ:

- повышение долговечности изделий, защищаемых огнезащитным покрытием за счет стойкости к воздействию внешних факторов,
- низкая стоимость нанесения огнезащитного покрытия, так как не требуется специальная подготовка персонала,
  - продолжительный срок эксплуатации.

К основным затратным статьям при производстве разработанного огнезащитного покрытия относят сырье и электрические ресурсы.

Проведем оценку экономической эффективности внедрения разработанного вспучивающегося огнезащитного покрытия для повышения огнестойкости

деревянных и металлических конструкций, рецептура которого приведена в Таблице 3.4.

Информация о массовом содержании компонентов, их стоимости и энергозатратах на изготовление вспучивающегося огнезащитного покрытия (в ценах 2022 г.) приведена в Таблице 5.3.

Таблица 5.3 – Содержание, стоимость компонентов и энергозатраты на изготовление вспучивающегося огнезащитного покрытия (в ценах 2022 г.)

| Наименование компонента                                        | Содержание компонента, мас. % | Стоимость<br>компонента, руб/т |
|----------------------------------------------------------------|-------------------------------|--------------------------------|
| Хлоропреновый каучук, тип CR 2322                              | 3,1                           | 615000                         |
| Хлористый парафин ХП-66Т, марка А                              | 5,2                           | 126000                         |
| Графит окисленный терморасширяющийся, марка EG-400             | 10,4                          | 510000                         |
| Меламин                                                        | 7,8                           | 120000                         |
| Пентаэритрит технический микронизированный, высший сорт        | 7,8                           | 155000                         |
| Полифосфат аммония (кристаллическая фаза II),<br>тип CF-APP201 | 15,6                          | 250000                         |
| Диоксид титана пигментный, марка TiOx-230                      | 2,6                           | 240000                         |
| Борат цинка                                                    | 2,6                           | 225000                         |
| Сольвент нефтяной                                              | 44,9                          | 120000                         |
| Общие энергозатраты                                            |                               | 217 КДж                        |
| Итого стоимость 1 кг                                           |                               | 205,04                         |

Расход вспучивающегося огнезащитного покрытия, необходимого для создания слоя покрытия 2 мм, рассчитывали по формуле (5.9)

$$B = \frac{\rho_{\text{Kp}} \cdot \rho_{\text{COЛЬВ.}} \cdot M_{\text{HЛ}}}{100 \cdot \rho_{\text{COЛЬВ.}} - (100 - M_{\text{HЛ}}) \cdot \rho_{\text{Kp}}},$$
(5.9)

где B -расход покрытия, кг/м $^2$ ;

 $ho_{\rm KD}$  — плотность покрытия, кг/м<sup>3</sup>;

 $\rho_{\text{сольв.}}$  – плотность сольвента, кг/м<sup>3</sup>;

 $M_{\rm HJ}$  — массовая доля нелетучих веществ, %.

Расход вспучивающегося огнезащитного покрытия, необходимого для создания слоя покрытия 2 мм составил 2,4 кг/м<sup>2</sup> и не учитывал потери при нанесении, которые зависят от конструкции защищаемой поверхности, опыта рабочих и т.д.

Затраты на изготовление 1 м<sup>2</sup> разработанного вспучивающегося огнезащитного покрытия толщиной слоя 2 мм приведены в Таблице 5.4.

Таблица 5.4 — Расход ресурсов на изготовление 1 м<sup>2</sup> разработанного вспучивающегося огнезащитного покрытия толщиной слоя 2 мм

| Ресурс                                                       | Расход, кг             | Стоимость, руб |
|--------------------------------------------------------------|------------------------|----------------|
| Хлоропреновый каучук, тип CR 2322                            | 7,44·10 <sup>-2</sup>  | 45,75          |
| Хлористый парафин ХП-66Т, марка А                            | 12,48·10 <sup>-2</sup> | 15,72          |
| Графит окисленный терморасширяющийся, марка EG-400           | 24,96·10 <sup>-2</sup> | 127,29         |
| Меламин                                                      | $18,72 \cdot 10^{-2}$  | 22,46          |
| Пентаэритрит технический микронизированный, высший сорт      | 18,72·10-2             | 58,03          |
| Полифосфат аммония (кристаллическая фаза II), тип CF-APP201  | 37,44·10-2             | 93,60          |
| Диоксид титана пигментный, марка TiOx-230                    | 12,48·10 <sup>-2</sup> | 29,02          |
| Борат цинка                                                  | 12,48·10 <sup>-2</sup> | 28,08          |
| Сольвент нефтяной                                            | 107,76·10-2            | 129,31         |
| Итого стоимость 1 м <sup>2</sup> покрытия толщиной слоя 2 мм |                        | 549,26         |

Следует подчеркнуть, что высокая стоимость разработанного вспучивающегося огнезащитного покрытия в первую очередь связана со стоимостью графита окисленного терморасширяющегося и растворителя. Стоимость 1 кг огнезащитного покрытия других производителей представлена в Таблице 5.5.

Критериями сравнения экономической эффективности разработанного вспучивающегося огнезащитного покрытия и огнезащитных покрытий (близких аналогов) других производителей служили стоимость материала и долговечность покрытия.

Таблица 5.5 – Стоимость 1 кг огнезащитного покрытия других производителей

| Торговая марка  | Производитель                   | Стоимость, руб/кг |  |
|-----------------|---------------------------------|-------------------|--|
| Эндотерм ХТ-150 | Группа компаний «Спецматериалы» | 1000              |  |
| Chartek-8       | Компания Akzo Nobel             | 7600 (95 EBPO)    |  |

Нормативная долговечность огнезащитного покрытия Эндотерм XT-150 производителя ГК «Спецматериалы» составляет не менее 12 лет. Прогнозируемая долговечность разработанного вспучивающегося огнезащитного покрытия составляет 15 лет. Тогда экономическая эффективность Э, руб/м², составит в соответствии с формулой (5.10)

$$\Im = C_{\Im_{HД}} \cdot P_{\Im_{HД}} - C_{\Pi} \cdot P_{\Pi} \cdot \left(\frac{\mathcal{A}_{\Im_{HД}}}{\mathcal{A}_{\Pi}}\right) 
\Im = 1000 \cdot 2,2 - 549,26 \cdot 2,4 \cdot \left(\frac{12}{15}\right) = 1145,42 \text{ py6/m}^2,$$
(5.10)

где  $C_{\rm Энд.}$  — стоимость покрытия Эндотерм XT-150, руб/кг;

 $P_{\rm Энд.}$  — расход покрытия Эндотерм XT-150 для получения предела огнестойкости R90, толщина металла 5,8 мм, кг/м<sup>2</sup>;

 $C_{\Pi}$  – стоимость разработанного покрытия, руб/кг;

 $P_{\Pi}$  – расход разработанного покрытия, кг/м<sup>2</sup>;

 $\mathcal{L}_{\text{Энд.}}$  – проектируемая долговечность покрытия Эндотерм XT-150, лет;

 $\mathcal{L}_{\Pi}$  – проектируемая долговечность разработанного покрытия, лет.

Продукт Chartek-8 компании Akzo Nobel имеет нормативную долговечность огнезащитного покрытия сроком 20 лет. Однако, вследствие высокой цены и большего расхода покрытия Chartek-8, применение разработанного вспучивающегося огнезащитного покрытия экономически оправдано. В случае применения разработанного вспучивающегося огнезащитного покрытия экономическая эффективность Э составит согласно формуле (5.11)

$$\Im = C_{\mathbf{q}.} \cdot P_{\mathbf{q}} - C_{\mathbf{n}} \cdot P_{\mathbf{n}} \cdot \left( \frac{\underline{\Lambda}_{\mathbf{q}.}}{\underline{\Lambda}_{\mathbf{n}}} \right)$$
(5.11)

$$9 = 7600 \cdot 6,5 - 549,26 \cdot 2,4 \cdot (\frac{20}{15}) = 47642,37 \text{ py6/m}^2,$$

где  $C_{\rm q}$  – стоимость покрытия Chartek-8, руб/кг;

 $P_{\rm Ч.}$  — расход покрытия Chartek-8 для получения огнезащиты R90, толщина металла 5,8 мм, кг/м²;

 $C_{\Pi}$  – стоимость разработанного покрытия, руб/кг;

 $P_{\Pi}$  – расход разработанного покрытия, кг/м<sup>2</sup>;

 $\mathcal{L}_{\mathrm{Ч.}}$  – проектируемая долговечность покрытия Chartek-8, лет;

 $\mathcal{L}_{\Pi}$  – проектируемая долговечность разработанного покрытия, лет.

Таким образом, по сравнению с огнезащитным составом Chartek-8, применение разработанного вспучивающегося огнезащитного покрытия экономически оправдано за счет более продолжительного срока эксплуатации при практически одинаковом расходе покрытия на квадратный метр, экономический эффект составляет 1145,42 руб/м² за весь срок эксплуатации. Продукт компании Akzo Nobel имеет больший срок эксплуатации, чем разработанное вспучивающееся огнезащитное покрытие, однако его стоимость существенно выше.

Расчетный экономический эффект от внедрения разработанного вспучивающегося огнезащитного покрытия для повышения огнестойкости деревянных и металлических конструкций составляет 47642,37 руб/м² за один год эксплуатации.

## 5.5. Выводы к Главе 5

- 1. Выбрана полиномиальная модель неполного третьего порядка аналитических зависимостей «состав кратность вспучивания» и «состав потеря массы», составлена матрица симплекс-решетчатого плана эксперимента.
- 2. Приготовлена серия трех двухкомпонентных и двух трехкомпонентных модельных образцов огнезащитного покрытия с различным содержанием компонентов вспучивающей добавки: бората цинка, терморасширяющегося графита и полифосфата аммония.

- 3. На основании экспериментальных данных рассчитаны значения коэффициента вспучивания и потери массы модельных образцов огнезащитного покрытия.
- 4. Выполнена проверка однородности дисперсий воспроизводимости параметров оптимизации по критерию Кохрена (*C*-критерию).
- 5. Проведена оценка значимости коэффициентов полученных моделей (5.2) и (5.3) по критерию Стьюдента (*t*-критерию).
- 6. Подтверждена адекватность полученных моделей (5.2) и (5.3) зависимостей «состав кратность вспучивания» и «состав потеря массы» с помощью критерию Фишера (*F*-критерию).
- 7. На основе анализа вклада каждого компонента вспучивающей добавки в расчетные значения кратности вспучивания и потери массы установлено, что наибольший вклад в изменение указанных параметров вносит тройная система: борат цинка полифосфат аммония терморасширяющийся графит.
- 8. Установлены рациональные диапазоны содержания базовых компонентов вспучивающей добавки:
  - полифосфата аммония 13,9–15,6 масс. %,
  - терморасширяющегося графита 9,0–10,4 масс. %,
  - бората цинка 2–3 масс. %,
- определяющих наиболее эффективные огнезащитные свойства (относительная потеря массы 1 %, коэффициент вспучивания 43,9) разработанного вспучивающегося огнезащитного покрытия.
- 9. Выполнена сравнительная оценка экономической эффективности внедрения разработанного вспучивающегося огнезащитного покрытия для деревянных и металлических конструкций с огнезащитными покрытиями других производителей – Эндотермом XT-150 (группа компаний «Спецматериалы») и Chartek-8 (компания Akzo Nobel). Расчетный экономический эффект от применения разработанного вспучивающегося огнезащитного покрытия составляет 47642,37 руб/м<sup>2</sup> за один год эксплуатации.

## **ЗАКЛЮЧЕНИЕ**

Диссертация является завершенной научно-квалификационной работой, в которой на основании научного обоснования параметров огнезащитных покрытий дано решение актуальной научно-технической задачи по повышению огнестойкости деревянных и металлических конструкций для обеспечения противопожарной защиты объекта и созданию на этой основе новой рецептуры вспучивающегося огнезащитного покрытия, обладающего устойчивостью к воздействию внешних факторов.

Основные выводы, научные и практические результаты выполненной диссертационной работы заключаются в следующем:

- 1. Выполнен анализ патентной и научно-технической информации относительно рецептур и свойств огнезащитных покрытий для деревянных и металлических конструкций, способов их получения, что позволило установить и обосновать направление исследований по созданию рецептурного состава вспучивающегося огнезащитного покрытия с устойчивостью к воздействию внешних факторов и повышенной огнезащитной эффективностью.
- 2. Научно обоснована классификация параметров, отражающая комплексный подход к оценке внешних факторов, влияющих на огнезащитные, физикомеханические и теплофизические свойства огнезащитных покрытий, что позволяет эффективности деревянных прогнозировать сохранение огнезащиты конструкций металлических не только В условиях пожара, НО эксплуатационный период.
- 3. Получены зависимости влияния содержания полифосфата аммония в диапазоне концентраций 13,9–15,6 масс. %; терморасширяющегося графита 9,0–10,4 масс. %; бората цинка 2–3 масс. % в компонентном составе огнезащитного покрытия на его водопоглощение, влагопоглощение, а также стойкость к переменному воздействию температуры и влажности.
- 4. На основании результатов экспериментальных исследований разработана новая рецептура вспучивающегося огнезащитного покрытия на основе

хлоропренового каучука. Установлено, что водопоглощение образцов покрытия, погружаемых в воду в течение 5 сут, составляет 3,8 %; подвергающихся воздействию влажного воздуха в течение 30 сут, а также переменному воздействию температуры и влажности (14 сут) — 10 %. Показано, что вода, влажность, переменное воздействие температуры и влажности не оказывают влияния на огнезащитные свойства разработанного покрытия — І группа огнезащитной эффективности для древесины и теплоизоляционные свойства вспененного кокса на стальной пластине толщиной 2 мм не изменились.

- 5. Определены параметры кокса, образующегося в результате нагрева и последующего вспучивания огнезащитного покрытия. Установлены зависимости влияния воды, влажности, переменного воздействия температуры и влажности на изменение потери массы, кратности вспучивания, плотности и пористости кокса, образующегося в процессе нагрева огнезащитного покрытия в диапазоне температур 27–670 °C.
- 6. Выполнена оптимизация параметров разработанного вспучивающегося огнезащитного покрытия по критериям коэффициенту вспучивания и потере массы, в результате которой установлены рациональные диапазоны содержания ингредиентов вспучивающей добавки: полифосфата аммония 13,9–15,6 масс. %, терморасширяющегося графита 9,0–10,4 масс. %, бората цинка 2–3 масс. %, определяющих наиболее эффективные огнезащитные свойства (относительная потеря массы 1 %, коэффициент вспучивания 44 единицы) покрытия.
- 7. Установлен синергетический эффект влияния совместного введения бората цинка, терморасширяющегося графита и полифосфата аммония на комплекс эксплуатационных свойств покрытия и формирование устойчивого коксового остатка в результате нагрева покрытия. Новое технологическое решение огнестойкости обеспечивает повышение деревянных И металлических конструкций, обработанных вспучивающимся огнезащитным покрытием, отличающимся устойчивостью к воздействию внешних факторов.
- 8. Проведена сравнительная оценка экономической эффективности внедрения разработанного огнезащитного покрытия вспучивающегося типа для

деревянных и металлических конструкций с огнезащитными покрытиями (близкими аналогами) других производителей — Эндотермом XT-150 (группа компаний «Спецматериалы») и Chartek-8 (компания Akzo Nobel). Установлено, что расчетный экономический эффект от применения разработанного вспучивающегося огнезащитного покрытия составляет около 47642 руб/м² за один год эксплуатации.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Пронин, Д. Г. Проблемы применения стальных и железобетонных несущих конструкций высотных зданий с точки зрения их огнестойкости / Д. Г. Пронин, Д. В. Конин // Пожаровзрывобезопасность. 2018. Т. 27, № 1. С. 50–57.
- 2. Тимофеева, С. С. Анализ, оценка, прогноз гибели и травмирования людей при пожарах в Российской Федерации / С. С. Тимофеева, Е. А. Хамидуллина, В. В. Гармышев // Научно-аналитический журнал «Вестник Санкт-Петербургского университета ГПС МЧС России». 2018. –№ 2. С. 1–8.
- 3. Туснина, В. М. Проектирование гражданских зданий массового строительства на основе типового стального каркаса / В. М. Туснина, Е. А. Галенко // Проектирование гражданских зданий массового строительства на основе типового стального каркаса // Промышленное и гражданское строительство. 2021. N 10. С. 17—23.
- 4. Ройтман, В. М. О механизме прогрессирующего обрушения высотного здания ВТЦ-7 во время событий 11 сентября 2001 года в Нью-Йорке / В. М. Ройтман // Пожаровзрывобезопасность. -2015. Т. 24, № 10. С. 37-44.
- 5. Зарубина, Л. П. Защита зданий, сооружений и конструкций от огня и шума. Материалы, технологии, инструменты и оборудование / Л. П. Зарубина. М.; Вологда: «Инфра-Инженерия», 2016. 336 с.
- 6. Исследование эксплуатационных характеристик наномодефицированных огнезащитных вспучивающихся композиций в условиях углеводородного пожара на объектах транспортировки нефтепродуктов / А. В. Иванов [и др.] // Пожаровзрывобезопасность. 2017. Т. 26, № 10. С. 5–19.
- 7. Акулов, А. Ю. Огнезащита строительных конструкций современные средства и методы оптимального проектирования / А. Ю. Акулов, А. В. Аксенов // Проблемы эксплуатации систем транспорта: материалы всероссийской научляракт. конф. Тюменский государственный нефтегазовый университет, Институт транспорта. 2009. С. 13–20.

- 8. Маковей, В. А. Направления развития огнезащиты материалов, изделий и конструкций, огнезащитных веществ и материалов / В. А. Маковей // Чрезвычайные ситуации: промышленная и экологическая безопасность. 2016. № 1 (25). С. 6–13.
- 9. Зарецкая, Ю. В. Виды огнезащитных материалов / Ю. В. Зарецкая // Молодой ученый. 2020. № 20 (310). С. 177–179.
- 10. Гаращенко, А. Н. Способы и средства обеспечения требуемых показателей пожаробезопасности конструкций из полимерных композитов (обзор) / А. Н. Гаращенко, А. А. Берлин, А. А. Кульков // Пожаровзрывобезопасность. 2019. Т. 28, № 2. С. 9–30. doi: 10.18322/ PVB.2019.28.02.9–30.
- 11. Гаращенко, А. Н. Исследования вариантов конструктивной огнезащиты на основе рулонного базальтового материала МБОР на стенде лучистого нагрева / А. Н. Гаращенко, А. В. Виноградов, И. З. Даштиев // Пожаровзрывобезопасность. 2020. Т. 29, № 6. С. 28—39. doi: 10.18322/ PVB.2020.29.06.28—39.
- 12. Сабирзянова, Р. Н. Исследование влияния составляющих компонентов вспучивающего антипирена на огнестойкие свойства материалов / Р. Н. Сабирзянова, И. В. Красина // Вестник Казанского технологического университета. -2015.- Т. 18, № 2.- С. 283-287.
- 13. Nurkulov, E. N. Synthesis and study of the properties of the metal-containing oligomer antypirene obtained based on local raw materials / E. N. Nurkulov, K. H. S. Beknazarov, A. T Jalilov // Scientific Bulletin of Namangan State University. − 2020. − Vol. 2, № 3. − P. 100–103.
- 14. Эффективность применения вспучивающегося огнезащитного покрытия в теплозащитной системе / Ф. Х. Абдрахманов [и др.] // Вестник Концерна ВКО Алмаз-Антей. 2020. № 4. С. 22–33. [Режим доступа]: https://doi.org/10.38013/2542–0542–2020–4–22–33.
- 15. Пат. RU 2065463 C1. Огнезащитный вспучивающийся состав для покрытий / Филиал «Научно-исследовательская часть» AO институт «Ростовский ПромстройНИИпроект» : заявитель и патентообладатель. Заявка № 94003518/04 от 20.08.1996. Опубл. : 20.08.1996. 14 с.

- 16. Пат. RU 2177973 C2. Огнезащитная вспучивающаяся эмаль / Жученко А. Г., Жученко Н. Г., Жученко О. Н.: заявитель и патентообладатель. Заявка № 99114574/04 от 13.07.1999. Опубл.: 10.01.2002. 7 с.
- 17. Ненахов, С. А. Экспериментальное изучение влияния толщины вспенивающихся покрытий на огнезащитную эффективность / С. А. Ненахов, В. П. Пименова // Пожаровзрывобезопасность. 2011. Т. 20, № 5. С. 2–9.
- 18. Халтуринский, Н. А. Механизме образования огнезащитных вспучивающихся покрытий / Н. А. Халтуринский, В. Г. Крупкин // Пожаровзрывобезопасность. -2011.- Т. 20, № 10.- С. 33-36.
- 19. Завьялов, Д. Е. Повышение эффективности огнезащитных вспучивающихся композиций : специальность 05.17.06. «Технология и переработка полимеров и композитов» : автореф. дис. ... канд. техн. наук / Д. Е. Завьялов. Санкт-Петербург, 2013. 23 с.
- 20. Корольченко, О. Н. Влияние средств огнезащиты на пожарную опасность древесины: специальность 05.26.03 «Пожарная и промышленная безопасность» (строительство): автореф. дис. ... канд. техн. наук / О. Н. Корольченко. Москва, 2010. 20 с.
- 21. Пат. RU 2174527 C1. Огнезащитная вспучивающаяся краска / Потапова Е. В. [и др.] : заявитель и патентообладатель. Заявка № 2001106493/04 от 13.03.2001. Опубл. : 10.10.2001. 8 с.
- 22. Pat. EP 1572816 B1. Flame retardant coating composition and method of preparing the same Inventor / H. A. Jin-Wook [et al.]: the applicant and the patent holder. Application № 03812376.6 from 14.04.2003. Public.: 08.07.2009.
- 23. Пат. RU 2387693 C1. Состав для получения огнезащитного покрытия / Закрытое акционерное общество «УНИ-ХИМТЕК» : заявитель и патентообладатель. Заявка № 2008132986/04 от 13.08.2008. Опубл. : 27.04.2010. -6 с.
- 24. Пат. RU 2726454 C1. Огнезащитная композиция / Шихалиев Э. А.: заявитель и патентообладатель. Заявка № 2019128588 от 12.09.2019. Опубл.: 14.07.2020. 10 с.

- 25. Пат. RU 2131899 C1. Состав для теплозащитного покрытия / Левичев А. Н., Костиков С. В., Ускач Я. Л. : заявитель и патентообладатель. Заявка № 97106114/04 от 16.04.1997. Опубл. : 20.06.1999. 13 с.
- 26. Пат. RU 2210582 C2. Теплозащитное покрытие / Закрытое акционерное общество Научно-производственное предприятие «Спецэнерготехника» : заявитель и патентообладатель. Заявка № 2001106156/04 от 06.03.2001. Опубл. : 10.02.2003. 5 с.
- 27. Гаращенко, А. Н. Влияние срока эксплуатации на огнезащитную эффективность вспучивающихся покрытий и огнестойкость конструкций / А. Н. Гаращенко, А. А. Кульков, В. Л. Страхов // Авиационные материалы и технологии. 2022. № 2 (67). С. 97–110. [Режим доступа]: http://www.jornal.viam.ru. doi: 10.18577/2713–0193–2022–0–2–97–110.
- 28. Пат. RU 2265632 C1. Огнезащитная композиция / Федеральное государственное унитарное предприятие «Пермский завод им. С. М. Кирова» : заявитель и патентообладатель. Заявка № 2004126125/04 от 26.08.2004. Опубл. : 10.12.2005. 8 с.
- 29. Пат. RU 2427600 C1. Огнезащитный состав для покрытия / Открытое акционерное общество «Метафракс» : заявитель и патентообладатель. Заявка № 2009146781/05 от 16.12.2009. Опубл. : 27.08.2011. -6 с.
- 30. Балакин, В. М. Первичная оценка огнезащитных свойств вспучивающихся покрытий на основе различных водных дисперсий / В. М. Балакин, А. М. Селезнев, К. В. Белоногов // Пожаровзрывобезопасность. − 2010. − Т. 19, № 6. − С. 14–18.
- 31. Применение синтетических латексов для получения пленок на основе бумаги / В. И. Азаров [и др.] // Лесной вестник. 2016. № 3. С. 10–14.
- 32. Дрижд, Л. Об особенностях конкуренции на рынке огнезащитных составов в Украине / Л. Дрижд // F+S: технологии безопасности и противопожарной защиты. -2011. -№ 6 (48). -C. 21–23.
- 33. Еремина, Т. Ю. Особенности и принципы построения рецептур огнезащитных вспучивающихся композиций на основе эпоксидных смол / Т. Ю. Еремина, М. В. Гравит, Ю. Н. Дмитриева // Пожаровзрывобезопасность. 2012. Т. 21, № 7. С. 52–56.

- 34. Еремина, Т. Ю. Назначение огнезащитных вспучивающихся композиций на основе эпоксидных смол и преимущества их использования / Т. Ю. Еремина, М. В. Гравит, Ю. Н. Дмитриева // Пожаровзрывобезопасность. 2012. Т. 21, № 8. С. 42–46.
- 35. Повышение огнезащитной эффективности вспучивающихся эпоксидных составов / Е. Ю. Спирина-Смилка [и др.] // Проблемы пожарной безопасности. -2011. -№ 30. C. 247–252.
- 36. Терморасширяющиеся полимерные композиционные материалы / Р. В. Кропачев [и др.] // Вестник технологического университета. 2015. Т. 18, № 5. С. 60—63.
- 37. Теплоухов, А. В. Методика и результаты оценки влияния длительной эксплуатации конструкций на основные свойства вспучивающихся огнезащитных покрытий / А. В. Теплоухов, В. Г. Зверев, А. Н. Гаращенко // Пожаровзрывобезопасность. 2016. Т. 25, № 1. С. 9–16. doi: 10.18322/PVB.2016.25.01.9–16.
- 38. Натеева, В. И. Исследование вспучивающихся огнезащитных покрытий на основе водо- и органорастворимых пленкообразователей с дешевым наполнителем / В. И. Натеева, Л. И. Кельдышева // Вестник технологического университета. 2017. Т. 20, № 15. С. 50–53.
- 39. Ненахов, С. А. Физикохимия вспенивающихся огнезащитных покрытий на основе полифосфата аммония (обзор литературы) / С. А. Ненахов, В. П. Пименова // Пожаровзрывобезопасность. 2010. Т. 19, № 8. С. 11–58.
- 40. Ненахов, С. А. Влияние концентрации газообразующего агента на закономерности развития пенококса огнезащитных составов / С. А. Ненахов, В. П. Пименова // Пожаровзрывобезопасность. 2010. Т. 19, № 3. С. 14–26.
- 41. Ненахов, С. А. Влияние наполнителей на структуру пенококса на основе полифосфата аммония / С. А. Ненахов, В. П. Пименова, Л. И. Натейкина // Пожаровзрывобезопасность. 2009. Т. 18, N 7. С. 51–58.
- 42. Зыбина, О. А. Основы создания эффективных огнезащитных коксообразующих композиций / О. А. Зыбина, М. В. Сильников // Известия

Российской академии ракетных и артиллерийских наук. -2016. -№ 3 (93). - С. 184–186.

- 43. Сильников, М. В. Изучение влияния пентаэритрита на огнезащитные свойства вспучивающихся покрытий / М. В. Сильников, О. А. Зыбина // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. -2016. -№ 9-10 (99-100). -C. 85-88.
- 44. Хлусова, В. П. Исследование влияния огнеупорных добавок на коэффициент вспучивания огнезащитной краски / В. П. Хлусова // Образование, наука, производство. VIII международный форум: сборник трудов конф. Белгород, 2016. С. 306–309.
- 45. Влияние состава и особенностей поведения вспучивающихся огнезащитных покрытий на их эффективность / А. Н. Гаращенко [и др.] // Вопросы оборонной техники. Серия 15: Композиционные неметаллические материалы в машиностроении. 2010. N 4 (159). С. 33–38.
- 46. Свойства огнезащитных вспучивающихся покрытий / А. В. Павлович [и др.] // Лакокрасочная промышленность. 2012. № 8. С. 18–23.
- 47. Designing steel structures for fire safety / ed. by J. M. Franssen, V. Kodur, R. Zaharia. Boca Raton : CRC Press, 2009. 162 p.
- 48. Li, G. Advanced analysis and design for fire Safety of steel structures / G. Li, P. Wang. Berlin: Springer, 2013. 357 p.
- 49. Yong, W. C. Steel and composite structures: behaviour and design for fire safety / W. C. Yong. London: Spon Press, 2002. 331 p.
- 50. Голованов, В. И. Экспериментальные и аналитические исследования несущей способности большепролетных железобетонных балок при огневом воздействии / В. И. Голованов, В. В. Павлов, А. В. Пехотиков // Пожаровзрывобезопасность. 2015. N 11. C. 31 -38.
- 51. Пособие по определению пределов огнестойкости конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов / ученый Совет ЦНИИСК им. Кучеренко Госстроя СССР. М.: Стройиздат. 1985. 56 с.

- 52. Орлова, С. С. Здания, сооружения и их устойчивость при пожаре: учебное пособие / С. С. Орлова, Т. А. Панкова, С. В. Затинацкий. Саратов: Изд-во «Саратовский источник». 2015. 130 с.
- 53. ГОСТ 14249–89 Сосуды и аппараты. Нормы и методы расчета на прочность. М. : Стандартинформ. 2008. 84 с.
- 54. Корольченко, А. Я. Средства огнезащиты. Справочник / А. Я. Корольченко, О. Н. Корольченко. М.: Пожнаука. 2006. 258 с.
- 55. Серков, Б. Б. Физико-химические основы горения и пожарная опасность древесины (часть 1) / Б. Б. Серков, Р. М. Асеева, А. Б. Сивенков // Академия Государственной противопожарной службы МЧС России. Интернет-журнал «Технологии техносферной безопасности». 2011. № 6 (40). С. 1—18. [Режим доступа]: http://agps-2006.narod.ru/ttb/2011—6/11—06—11.ttb.pdf.
- 56. Страхов, В. Л. Огнезащита строительных конструкций / В. Л. Страхов, А. М. Крутов, Н. Ф. Давыдкин ; под ред. Ю. А. Кошмарова. М. : ТИМР, 2000. 433 с.
- 57. Современные тенденции в области огнестойкости деревянных зданий и сооружений / О. В. Арцыбашева [и др.] // Известия ЮФУ. Технические науки. -2013. № 8 (145). С. 178—196.
- 58. Асеева, Р. М. Горение и пожарная опасность древесины / Р. М. Асеева, Б. Б. Серков, А. Б. Сивенков // Пожаровзрывобезопасность. 2012. Т. 1, № 1. С. 19–32.
- 59. Исследование скорости обугливания деревянных конструкций длительного срока эксплуатации / М. М. Альменбаев [и др.] // Известия ЮФУ. Технические науки. 2014. № 9 (158). С. 246–254.
- 60. Гаращенко, Н. А. Результаты огневых испытаний клеенодеревянных панелей со вспучивающимися покрытиями // Пожаровзрывобезопасность. 2006.
   Т. 15, № 2. С. 12–16.
- 61. Устрехов, А. И. Показатели конструктивной пожарной опасности и перспективы использования деревоклееных конструкций, защищенных

- вспучивающимися покрытиями / А. И. Устрехов, Н. А. Гаращенко // Монтажные и специальные работы в строительстве. 2006. № 6. C. 12-16.
- 62. Гаращенко, Н. А. Теплотехнические расчеты огнестойкости деревоклееных конструкций с огнезащитой // Н. А. Гаращенко, А. Н. Гаращенко, В. П. Рудзинский // Монтажные и специальные работы в строительстве. − 2006. − № 10. − С. 14–18.
- 63. Расчеты толщин огнезащиты, обеспечивающих требуемые показатели пожарной опасности деревоклееных конструкций / А. Я. Корольченко [и др.] // Пожаровзрывобезопасность. 2008. Т. 17, № 3. С. 49–56.
- 64. Якубсон, В. М. Перспективы металла как строительного материала / В. М. Якубсон // Инженерно-строительный журнал. 2015. № 2 (54). С. 4—6.
- 65. Березовский, А. И. Определение коэффициента вспучивания и прочностных характеристик вспученного слоя огнезащитных вибростойких покрытий для противопожарной защиты металлических элементов и конструкций / А. И. Березовский, И. Г. Маладыка // Вестник Командно-инженерного института МЧС Республики Беларусь. 2013. № 1 (17). С. 59–67.
- 66. Исследование старения огнезащитных вспучивающихся покрытий методами СЭМ, XRD и ИК-спектроскопии / М. Ю. Умрихина [и др.] // Пожаровзрывобезопасность. 2020. Т. 29, № 5. С. 60–70.
- 67. Старишко, И. Н. Влияние условий эксплуатации на несущую способность железобетонных элементов по нормальным и наклонным сечениям / И. Н. Старишко // Промышленное и гражданское строительство. 2012. № 1. С. 49–51.
- 68. Теличенко, В. И. Анализ причин и последствий крупных чрезвычайных ситуаций с целью обеспечения комплексной безопасности зданий и сооружений / В. И. Теличенко, В. М. Ройтман // Вестник МГСУ. 2020. Т. 15, № 1. С. 72–84.
- 69. Mohsen, A. S. Effect of longitudinal rebar corrosion on the compressive strength reduction of concrete in reinforced concrete structure / A. S. Mohsen, A. B. Mohammad, G. B. Mohammad // Advances in Structural Engineering. 2016. Vol. 19, № 6. P. 897–907.

- 70. Кузнецова, Т. А. Определение срока службы огнезащитных покрытий / Т. А. Кузнецова // Научный вестник УкрНИИПБ. 2007. № 2 (16). С. 125–128.
- 71. Вахитова, Л. Н. Срок службы огнезащитных покрытий вспучивающегося типа/ Л. Н. Вахитова, М. П. Лапушкин, К. В. Калафат // F+S: технологии безопасности и противопожарной защиты. -2011. -№ 2 (50). -C. 58–61.
- 72. Теплоухов, А. В. Методика и результаты оценки влияния длительной эксплуатации конструкций на основные свойства вспучивающихся огнезащитных покрытий / А. В. Теплоухов, В. Г. Зверев, А. Н. Гаращенко // Пожаровзрывобезопасность. 2016. Т. 25, № 1. С. 9–16.
- 73. Уткин, С. В. Изучение огнезащитных вспенивающихся составов по металлическим конструкциям при их эксплуатации / С. В. Уткин, Н. В. Семенова // Надзорная деятельность и судебная экспертиза в системе безопасности. 2015. № 3. С. 43–46.
- 74. Федотов, И. О. Эффективность огнезащитных пропиточных составов для деревянных конструкций / И. О. Федотов, А. Б. Сивенков // Проблемы управления рисками в техносфере. 2023. № 3 (67). С. 67–78.
- 75. ГОСТ 9.906–83 Единая система защиты от коррозии и старения (ЕСЗКС). Станции климатические испытательные. Общие требования (с Изменениями № 1, 2). М. : ИПК Изд-во стандартов, 1983. 17 с.
- 76. Российская Федерация. Законы. Технический регламент о требованиях пожарной безопасности : федер. закон от 22.07.2008 г. № 123-ФЗ // Рос. газ. 2008. 1 августа. С. 3.
- 77. ГОСТ 30247.0–94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования. М. : ИПК Изд-во стандартов, 1994.-11 с.
- 78. ГОСТ 30247.1–94 Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции. М.: ИПК Изд-во стандартов, 1995. 11 с.
- 79. СП 64.13330.2011 Свод правил. Деревянные конструкции: актуализированная редакция СНиП II-25-80: утвержден Министерством

- регионального развития Российской Федерации 28.12.2010 № 826: введен 20.05.2011. Москва: Минрегион России, 2011. 175 с.
- 80. Корольченко, А. Я. Особенности огнезащиты конструкций из древесины вспучивающимися покрытиями / А. Я. Корольченко, Н. А. Гаращенко // Пожаровзрывобезопасность. 2005. N 1. С. 38—41.
- 81. Лакокрасочные материалы и покрытия. Теория и практика / под ред. Р. Ламбурна; пер. с англ., под ред. Л. Н. Матляковского. СПб. : Химия, 1991. 512 с.
- 82. Карякина, М. И. Физико-химические основы процессов формирования и старения покрытий / М. И. Карякина. М. : Химия, 1980. 216 с.
- 83. Барботько, С. Л. Оценка пожаробезопасности полимерных материалов авиационного назначения: анализ состояния, методы испытаний, перспективы развития, методические особенности / С. Л. Барботько, О. С. Вольный, О. А. Кириенко, Е. Н. Шуркова; под общ. ред. Е. Н. Каблова. М.: ВИАМ, 2019. 424 с.
- 84. Яковлев, А. Д. Химия и технология лакокрасочных покрытий / А. Д. Яковлев. Ленинград : Химия, 1989. 384 с.
- 85. Романенков, И. Г. Огнестойкость строительных конструкций из эффективных материалов / И. Г. Романенков, В. Н. Зингерн-Корн. М. : Стройиздат, 1984. 240 с.
- 86. ГОСТ Р 53295–2009. Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности (с Изменением № 1). М. : Стандартинформ, 2009. 22 с.
- 87. ГОСТ Р 53292–2009. Огнезащитные составы и вещества для древесины и материалов на ее основе. Общие требования. Методы испытаний. М.: Стандартинформ, 2009. 18 с.
- 88. Собурь, С. В. Огнезащита материалов и конструкций: учебносправочное пособие / С. В. Собурь. М.: Пожкнига, 2008. 200 с.
- 89. Боровик, С. И. Анализ методик оценки влияния эксплуатационных факторов на огнезащитные покрытия для металлических конструкций /

- С. И. Боровик, Л. А. Трофимова // Научные исследования: теория, методика и практика: материалы III международ. науч.-практ. конф. 19 ноября 2017 г. Чебоксары, 2017. T. 2, № 3. C. 18–21.
- 90. ГОСТ 9.401–91 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов. М.: Стандартинформ, 1991. 42 с.
- 91. ГОСТ 15140–78 Материалы лакокрасочные. Методы определения адгезии (с Изменениями № 1, 2, 3). М. : ИПК Изд-во стандартов, 1978. 8 с.
- 92. ГОСТ 9.407–84 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Метод оценки внешнего вида. М. : Стандартинформ, 1984. 8 с.
- 93. Оценка допустимого срока эксплуатации тонкослойных огнезащитных покрытий в различных климатических условиях. Методика / Н. В. Смирнов [и др.]. М.: ВНИИПО, 2014. 42 с.
- 94. Определение теплоизолирующих свойств огнезащитных покрытий по металлу. Методика / С. В. Баженов, Ю. В. Наумов, Л. В. Мотина. М. : ВНИИПО, 1998. 19 с.
- 95. Кальченко, И. Е. Анализ объективности оценки огнестойкости и эффективности огнезащиты конструкций объектов инфраструктуры различного назначения / И. Е. Кальченко // Теоретические и прикладные аспекты современной науки: материалы III междунар. науч.-практ. конф.: В 5 ч.; под общ. ред. М. Г. Петровой. Белгород, 2014. Ч. І. С. 64–72.
- 96. Уткин, С. В. Проблемы оценки эффективности огнезащитных покрытий для металлических конструкций / С. В. Уткин, Н. В. Семенова, С. А. Кондратьев // Известия Волгоградского государственного технического университета. 2015. № 7 (164). С. 159–161.
- 97. Багрова, М. А. Современные методы огнезащиты стальных конструкций / М. А. Багрова // Наука и современность. 2011. № 10–1. С. 9–14.

- 98. Круглов, Е. Ю. Беспламенное горение древесины: обугливание и характеристики тепловыделения / Е. Ю. Круглов, Р. М. Асеева // Пожаровзрывобезопасность. 2021. 30 (5). С. 30–41. doi: 10.22227/0869—7493.2021.30.05.30–41.
- 99. Лебедева, В. В. Оптимизация состава огнезащитного покрытия методом симплекс-решетчатого планирования / В. В. Лебедева, И. Н. Непочатых // Научный вестник НИИ «Респиратор». 2022. № 4 (59). С. 60–65.
- 100. Смирнов, В. А. Иерархическое моделирование строительных материалов как дисперсных систем: специализированная программная реализация / В. А. Смирнов, Е. В. Королев // Строительные материалы. 2019. № 1–2. С. 43–52.
- 101. Бардин, А. В. Огнестойкость металлоконструкций на примере метода численного моделирования / А. В. Бардин, О. Ю. Сударь // Строительство уникальных зданий и сооружений. 2015. № 8 (35). С. 36–47.
- 102. Королев, Е. В. Моделирование и инструментальные средства численного анализа в нанотехнологии материаловедения: обзор / Е. В. Королев, В. А. Смирнов, А. В. Евстигнеев // Нанотехнологии в строительстве. 2014. Т. 6, № 5. С. 34–47.
- 103. Королев, Е. В. Наноструктура матриц серных строительных композитов: методология, методы, инструментарий / Е. В. Королев, В. А. Смирнов, А. В. Евстигнеев // Нанотехнологии в строительстве. 2014. Т. 6, № 6. С. 106–129.
- 104. Покровская, Е. Н. Разработка нано модифицированных полифункциональных защитных систем для деревянных конструкций / Е. Н. Покровская // Вестник МГСУ. 2021. Т. 16, № 1. С. 59—66. doi: 10.22227/1997—0935.2021.1.59—66.
- 105. Системный анализ в строительном материаловедении / Ю. М. Баженов [и др.]. М. : МГСУ, 2012. 432 с.
- 106. Королев, Е. В. Радиационно-защитные и химически стойкие серные строительные материалы / Е. В. Королев, Ю. М. Баженов, А. И. Альбакасов. Пенза; Оренбург: ИПК ОГУ, 2010. 364 с.

- 107. Справочник резинщика. Материалы резинового производства / П. А. Захарченко [и др.]. М.: Химия, 1971. 607 с.
- 108. Thermal and fire behaviour of ammonium polyphos-phate/acrylic coated cotton/PESFR fabric / C. Drevelle [et al.] // Polymer Degradation and Stability. 2005. Vol. 88. P. 130.
- 109. Зыбина, О. А. Проблемы технологии коксообразующих огнезащитных композиций / О. А. Зыбина, А. В. Варламов, С. С. Мнацаканов. Новосибирск : ЦРНС. — 2010. — 50 с.
- 110. МЕТОРАС EG350-8095 / EG350-8099 графит окисленный терморасширяющийся. [Режим доступа] : http://chemsystem.ru/catalog/605.
- 111. ГОСТ 16363–98 Средства огнезащитные для древесины. Методы определения огнезащитных свойств. М.: Изд-во стандартов. 1998. 7 с.
- 112. Лебедева, В. В. Лабораторная установка для исследования свойств огнезащитного покрытия / В. В. Лебедева, И. Н. Непочатых, О. В. Храпоненко // Научный вестник НИИГД «Респиратор». 2021. № 2 (58). С. 100–108.
- 113. ГОСТ 4650–2014 (ISO 62:2008) Пластмассы. Методы определения водопоглощения. М. : Стантартинформ. 2014. 20 с.
- 114. ГОСТ Р 59637–2021 Средства противопожарной защиты зданий и сооружений. Средства огнезащиты. Методы контроля качества огнезащитных работ при монтаже (нанесении), техническом обслуживании и ремонте. М.: Российский институт стандартизации. 2021. 24 с.
- 115. Горовых, О. Г. Механизмы процессов, реализующихся при защите древесины огнезащитными составами /О. Г. Горовых // Чрезвычайные ситуации: предупреждение и ликвидация. 2017. № 1 (41). С. 47–57.
- 116. Зыбина, О. А. Теоретические принципы и технология огнезащитных вспучивающихся материалов : дис. ... д-ра техн. наук : 05.17.06 / Зыбина Ольга Александровна ; Санкт-Петербургский государственный университет кино и телевидения. СПб, 2015. 260 с.
- 117. Тепломассообмен в тепло- и огнезащите с учетом процессов термического разложения, испарения–конденсации, уноса массы и вспучивания–

- усадки / В. Л. Страхов [и др.] // Математическое моделирование. 2000. Т. 12,  $N_{2}$  5. С. 107—113.
- 118. Страхов, В. Л. Программные комплексы для расчетов температурных полей в строительных конструкциях с огнезащитой с учетом термического разложения, вспучивания—усадки и испарения—конденсации // В. Л. Страхов, А. Н. Гаращенко, В. П. Рудзинский // Пожаровзрывобезопасность. 2001. Т. 10, № 4. С. 9—11.
- 119. Шаршанов, А. Я. Математическая модель вспучивающихся огнезащитных покрытий / А. Я. Шаршанов // Проблемы пожарной безопасности. 2011. № 30. С. 273—280.
- 120. Моделирование тепло- и массопереноса во вспучивающихся огнезащитных покрытиях / В. Г. Зверев [и др.] // Физика горения и взрыва. 1998. Т. 34, № 2. С. 90—98.
- 121. Ненахов, С. А. Физические превращения в огнезащитных вспенивающихся покрытиях на основе органо/неорганических составов / С. А. Ненахов, В. П. Пименова // Пожаровзрывобезопасность. 2011. Т. 20, № 8. С. 17–24.
- 122. Моделирование влияния режимов огневого воздействия на эффективность вспучивающихся огнезащитных покрытий / А. Н. Гаращенко [и др.] // Вопросы оборонной техники. 2020. Т. 15, № 3–4 (198–199). С. 75–84.
- 123. Intumescent reaction mechanisms / C. E. Anderson [et al.] // Journal of Fire Science. 1985. Vol. 3 P. 161–194.
- 124. Buckmaster, J. Model for intumescent paints / J. Buckmaster, C. E. Anderson, A. Nachman // International Journal of Engineering Science. 1986. Vol. 24. № 3. P. 263–276.
- 125. Anderson, C. E. Thermal conductivity of intumescent chars / C. E. Anderson, D. E. Ketchum, W. P. Mountain // Journal of Fire Science. 1988. Vol. 6 P. 390–410.
- 126. Zhang, L. Combined heat transfer mechanisms in the porous char layer formed from the intumescent coatings under fire / L. Zhang, Y. Hu, L. Minghai // Coatings. 2021. № 11 (2). P. 1–22. doi: 10.3390/coatings11020200/.

127. Ахназарова, С. Л. Оптимизация эксперимента в химии и химической технологии / С. Л. Ахназарова, В. В. Кафаров. – М. : Высшая школа. – 2008. – 319 с.